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Course Contents

Parts of the course:

A. background
> mathematical foundations and proof techniques
B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
> What is a computation?
C. Turing computability (Turing-Berechenbarkeit)
> What can be computed at all?
D. complexity theory (Komplexitatstheorie)
> What can be computed efficiently?
E. more computability theory (mehr Berechenbarkeitheorie)
> Other models of computability
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Summary

m Finite automata are a good model for computers
with very limited memory.
Where can the turnstile controller store information
about what it has seen in the past?

m We will not consider automata that run forever
but that process a finite input sequence and
then classify it as accepted or not.

m Before we get into the details, we need some background on

formal languages to formalize what is a valid input sequence.
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Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}
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Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

= {aa b}
Y* ={e,a,b,aa,ab,ba,bb,...}
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Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

We write |w/| for the length of a word w.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}
Y* ={e,a,b,aa,ab,ba,bb,...}
laba| = 3,|b| =1,|e| =0




Introduction Alphabets and Formal Languages DFAs
0000 0@000 00

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

We write |w/| for the length of a word w.

A formal language (over alphabet ¥) is a subset of X*.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}
Y* ={e,a,b,aa,ab,ba,bb,...}
laba| = 3,|b| =1,|e| =0
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Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"
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Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"
mS ="
m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
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Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

ES=X"
m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
] 54 = {8}
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Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10
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Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10

m S¢ = {w € I* | w contains twice as many as as bs}
= {e, aab, aba, baa, ... }
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Summary

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10

m S¢ = {w € I* | w contains twice as many as as bs}
= {e, aab, aba, baa, ... }

B S ={weXl||w =3}
= {aaa, aab, aba, baa, bba, bab, abb, bbb}
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Exercise (slido)

Consider ¥ = {push, validcard}.
What is |pushvalidcard|?
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Finite Automaton: Example
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do,
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
g0,
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1,
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do. g1,
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, 9o,
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, qo.
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
qo, 91, 90, qo.
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
qdo, 91, 90, qo.
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, 41, qo. qo. g1,
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, qo. qo. g1,
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Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, 41, qo, qo, 91, 2.
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Finite Automata: Terminology and Notation
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m states Q = {qo, 91, 92}
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Finite Automata: Terminology and Notation

!
OSEmO Ot

0

m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}
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Finite Automata: Terminology and Notation

1 ' 1
oOSmO=k :
0
m states Q = {qo, 91, 92} 0(qo,0) = q1
® input alphabet ¥ = {0,1} 9(qo,1) = qo
m transition function ¢ 0(g1,0) = g2
6(q1,1) = qo
(g2,0) = q2
(g2,1) = qo




m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}

m transition function §

table form of §
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m states Q = {qo, g1, G2} 6(q0,0) = q1

® input alphabet ¥ = {0,1} 9(qo,1) = qo

m transition function ¢ 0(g1,0) = g2

m start state qg 0(q1,1) = qo NP
6(q2,0) = q2
6(q2,1) = qo
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m states Q = {qo, g1, G2} 6(q0,0) = q1
® input alphabet ¥ = {0,1} 9(qo,1) = qo
m transition function ¢ 0(g1,0) = g2
m start state qg 0(q1,1) = qo NP
m accept states {q»} 0(g2,0) = g2
6(q2,1) = qo



DFAs
0008000000000

Introduction

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M={(Q,X,d,qo, F) where

Q is the finite set of states

2 is the input alphabet

d: Q x X — Q is the transition function
go € Q is the start state

F C Q is the set of accept states (or final states)

German: deterministischer e_ndlicher Autom_@t, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,

Startzustand, Endzustinde



ets and Formal Languages DFAs

O000@00000000

Exercise

Give a formal definition of the following DFA
(for the transition function, only exemplarily
specify the transitions for state qo): %,

b -2
C a
b,c a a,b,c
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DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.
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DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Definition (Words Accepted by a DFA)

DFA M = (Q, %, 4, qo, F) accepts the word w = a1 ... a,
if there is a sequence of states g, ..., q, € Q with

Q 9 = qo,

Q 4(q,_q,ai)) =gl forall i e {1,...,n} and

Q qg,€F.

German: DFA akzeptiert das Wort
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Example

. ' . accepts: does not accept:

1 (1)8010100 ioo1o1o

5 01000 010001
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Exercise (slido)

Consider again the following DFA:

b
OB0=0=0
— a1 qz qs3
|/
0E0=0 ”
b,c a a,b,c %

Which of the following words does it accept?

m abc
m ababcb
m babbc
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DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton.
The language recognized by M is defined as
L(M)={w € £* | w is accepted by M}.
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Example

The DFA recognizes the language
{w € {0,1}* | w ends with 00}.
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Exercise

Specify a DFA with input alphabet ¥ = {0,1}
that recognizes the following language:

L={w e {0,1}" | every 0 in w is directly followed by a 1}

Eg 001 ¢ L, 11€L, 101 €L
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A Note on Terminology

m In the literature, “accept” and “recognize” are sometimes
used synonymously or the other way around.
DFA recognizes a word or accepts a language.

m We try to stay consistent using the previous definitions
(following the text book by Sipser).
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Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are
nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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In what Sense is a DFA Deterministic?

m A DFA has a single fixed state
from which the computation starts.

m When a DFA is in a specific state and reads an input symbol,
we know what the next state will be.

m For a given input, the entire computation is determined.

m This is a deterministic computation.
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Nondeterministic Finite Automata: Example

0,1
*@\E&)@ : @

differences to DFAs:
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Nondeterministic Finite Automata: Example

0,1

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X
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Nondeterministic Finite Automata: Example

0,1

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X

m c-transitions can be taken without “consuming” a symbol
from the input
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Nondeterministic Finite Automata: Example

0,1

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X

m c-transitions can be taken without “consuming” a symbol
from the input

m the automaton accepts a word if there is
at least one accepting sequence of states
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Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M={(Q,X,d,qo, F) where

Q is the finite set of states
Y is the input alphabet

d:Q x (XU{e}) = P(Q) is the transition function
(mapping to the power set of Q)

go € Q is the start state
F C Q is the set of accept states

German: nichtdeterministischer endlicher Automat
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Introduction

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M={(Q,X,d,qo, F) where

Q is the finite set of states
Y is the input alphabet

d:Q x (XU{e}) = P(Q) is the transition function
(mapping to the power set of Q)

go € Q is the start state
m F C Q is the set of accept states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.
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Accepting Computation: Example

() —= % ° (&)} —2 @ w = 0100

NN/

€

~ computation tree on blackboard
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Accepting Computation: Example

() —= @ 0 @ 0 @ w = 0100

€
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e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.
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Introduction

e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.

Definition (e-closure)

For NFA M = (Q, X, 0, qo, F) and state g € Q, state p is in the
e-closure E(q) of g iff there is a sequence of states qp, . . ., g, with

Q q=gq
Q g/ €0(q._q,¢) forallie{l,...,n} and
Q@ q,=p. ]
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e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.

Definition (e-closure)

For NFA M = (Q, X, 0, qo, F) and state g € Q, state p is in the
e-closure E(q) of g iff there is a sequence of states qp, . . ., g, with

Q@ q=aq
Q g/ €0(q._q,¢) forallie{l,...,n} and
Q q,=p

q € E(q) for every state g
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NFA: Accepted Words

Definition (Words Accepted by an NFA)

NFA M = (Q, %, 4, qo, F) accepts the word w = a3 ... a,
if there is a sequence of states g, ..., q, € Q with

Q a5 € E(qo),
@ q; € Uges(q ,,a) E(q) forall i€ {1,...,n} and
Q gq,cF.
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Example: Accepted Words

0,1
: /O\ o (N0 (=)

—>( 9o q1 qz a3
Q\kj/u

e
accepts: does not accept:
0 5
10010100 1001010
01000 010001
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Exercise (slido)

Does this NFA accept input 010107
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NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet .

The language recognized by M is defined as
L(M) ={w € ©* | w is accepted by M}.
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Example: Recognized Language

NS € @ 0 @ 0 @
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Example: Recognized Language

0,1
. /O\ o (N o =)
—>( qo q1 a2 q3
N "/
€

The NFA recognizes the language
{w € {0,1}* | w = 0 or w ends with 00}.
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DFAs vs. NFAs
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DFAs are No More Powerful than NFAs

Observation
Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
5(q,a) = ¢’ with §(q,a) = {q'}.
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Question

DFAs are
no more powerful than NFAs.
But are there languages
that can be recognized
by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.
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DFA

NFAs are No More Powerful

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let's first have a look at
the idea by means of an example (on the blackboard).
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Conversion of an NFA to an Equivalent DFA: Example

0,1
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof
For every NFA M = (Q, X, d, qo, F) we can construct
a DFA M’ = (@', %, &, gy, F') with £(M) = L(M").
Here M’ is defined as follows:

B Q :=P(Q) (the power set of Q)

= qo := E(q0)

m FF:={QCQ|ANF#0}

m Forall Q€ Q" 6'(Q,a) := Ugeq Uges(q.0) E(G)

\
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1ay...a, € ¥*:

w € L(M)
iff there is a sequence of states pg, p1, ..., pn With
po € E(qo), pn € F and
Pi € Uges(p;1,an) E(q) forall i € {1,..., n}
iff there is a sequence of subsets Qp, 91, ..., 9, with
Qo =qp Qn € F and §'(Qj_1,a;) = Q; forall i € {1,...,n}
iff w e L(M) O]
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re More Compact than DFAs

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.
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re More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>( 9o q1 q2 9k
6 / N
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re More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>( 9o q1 q2 9k
6 / N

There is no DFA with less than 2% states that accepts Ly
(without proof).
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Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>( 9o q1 q2 9k
6 / N

There is no DFA with less than 2% states that accepts Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.
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Questions
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Questions?
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Summary

m DFAs are automata where every state transition
is uniquely determined.

m NFAs can have zero, one or more transitions
for a given state and input symbol.

m NFAs can have e-transitions that can be taken without
reading a symbol from the input.

m NFAs accept a word if there is at least one
accepting sequence of states.

m DFAs and NFAs accept the same languages.
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