Theory of Computer Science
B1. Finite Automata

Gabriele Roger

University of Basel

March 8, 2021

Introduction

Introduction
000

Course Contents

Parts of the course:

A. background
> mathematical foundations and proof techniques
B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
> What is a computation?
C. Turing computability (Turing-Berechenbarkeit)
> What can be computed at all?
D. complexity theory (Komplexitatstheorie)
> What can be computed efficiently?
E. more computability theory (mehr Berechenbarkeitheorie)
> Other models of computability

Introduction
000

Course Contents

Parts of the course:

A. background
> mathematical foundations and proof techniques
B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
> What is a computation?
C. Turing computability (Turing-Berechenbarkeit)
> What can be computed at all?
D. complexity theory (Komplexitatstheorie)
> What can be computed efficiently?
E. more computability theory (mehr Berechenbarkeitheorie)
> Other models of computability

Introduction
00®0

A Controller for a Turnstile

m simple access control
m card reader and push sensor
m card can either be valid or invalid

CC BY-SA 3.0, author: Stolbovsky

Introduction
00®0

A Controller for a Turnstile

m simple access control
m card reader and push sensor
m card can either be valid or invalid

CC BY-SA 3.0, author: Stolbovsky

validcard,
invalidcard

push,
invalidcard

validcard

Introduction Alphabets and Formal Lang

[eJe]e]]

Summary

m Finite automata are a good model for computers
with very limited memory.
Where can the turnstile controller store information
about what it has seen in the past?

m We will not consider automata that run forever
but that process a finite input sequence and
then classify it as accepted or not.

m Before we get into the details, we need some background on

formal languages to formalize what is a valid input sequence.

Alphabets and Formal Languages
©0000

Alphabets and Formal Languages

Introduction Alphabets and Formal Languages DFA
0000 0@000

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}

Introduction Alphabets and Formal Languages DFAs
0000 0@000 00

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

= {aa b}
Y* ={e,a,b,aa,ab,ba,bb,...}

Introduction Alphabets and Formal Languages DFAs
0000 0@000 00

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

We write |w/| for the length of a word w.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}
Y* ={e,a,b,aa,ab,ba,bb,...}
laba| = 3,|b| =1,|e| =0

Introduction Alphabets and Formal Languages DFAs
0000 0@000 00

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet X is a finite non-empty set of symbols.

A word over ¥ is a finite sequence of elements from .

The empty word (the empty sequence of elements) is denoted by «.
> * denotes the set of all words over X.

Y (= Z*\ {e}) denotes the set of all non-empty words over ¥.

We write |w/| for the length of a word w.

A formal language (over alphabet ¥) is a subset of X*.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Y ={a,b}
Y* ={e,a,b,aa,ab,ba,bb,...}
laba| = 3,|b| =1,|e| =0

juction Alphabets and Formal Languages : FAs Summary

[e]e] le]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

juction Alphabets and Formal Languages : FAs Summary

[e]e] le]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"
mS ="

uction Alphabets and Formal Languages

[e]e] le]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"
mS ="
m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }

Introduction Alphabets and Formal Languages / As v As Summary

[e]e] le]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

ES=X"
m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
] 54 = {8}

Introduction Alphabets and Formal Languages / As v As Summary

[e]e] le]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10

Introduction Alphabets and Formal Languages / As v As Summary

[e]e] le]e}

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10

m S¢ = {w € I* | w contains twice as many as as bs}
= {e, aab, aba, baa, ... }

Introduction Alphabets and Formal Languages

[e]e] le]e}

Summary

Languages: Examples

Example (Languages over ¥ = {a, b})

m S5; = {a,aa, aaa, aaaa,... } = {a}"

mS ="

m 53 ={a"" | n> 0} = {e, ab, aabb, aaabbb, ... }
m S, ={¢}

B Ss=10

m S¢ = {w € I* | w contains twice as many as as bs}
= {e, aab, aba, baa, ... }

B S ={weXl||w =3}
= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Alphabets and Formal Languages
0000

Exercise (slido)

Consider ¥ = {push, validcard}.
What is |pushvalidcard|?

Alphabets and Formal Languages
0000®

Questions

N

~

Questions?

DFAs
©000000000000

DFAs

DFAs
0®00000000000

Finite Automaton: Example

and Formal Languages DFAs
0000000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do,

Introduction A ts and Formal Languages DFAs Summar

O®@00000000000 000000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
g0,

Introduction Alphabets and Formal Languages DFAs) Summar
0000 000000000000 000000000000 0O« 9 oo

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1,

Introduction Alphabets and Formal Languages DFAs) Summar
0000 000000000000 000000000000 0O« 9 oo

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do. g1,

Introduction Alphabets and Formal Languages DFAs) Summar
0000 000000000000 000000000000 0O« 9 oo

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, 9o,

Introduction Alphabets and Formal Languages DFAs) Summar
0000 000000000000 000000000000 0O« 9 oo

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, qo.

Introduction Alphabets and Formal Languages DFAs) Summar
0000 000000000000 000000000000 0O« 9 oo

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
qo, 91, 90, qo.

Introduction Alphabets and Formal Languages DFAs) Summar
0000 000000000000 000000000000 0O« 9 oo

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
qdo, 91, 90, qo.

Introduction Alphabets and Formal Languages DFAs) Summar
0000 000000000000 000000000000 0O« 9 oo

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, 41, qo. qo. g1,

Introduction A ts and Formal Languages DFAs Summar

O®@00000000000 000000000000

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, g1, qo. qo. g1,

Introduction Alphabets and Formal Languages DFAs) Summar
0000 000000000000 000000000000 0O« 9 oo

Finite Automaton: Example

When reading the input 01100 the automaton visits the states
do, 41, qo, qo, 91, 2.

DFAs
00®0000000000

Finite Automata: Terminology and Notation

!
OSSO Ot

0

DFAs
00®0000000000

Finite Automata: Terminology and Notation

!
OSSO0t

0

m states Q = {qo, 91, 92}

DFAs
00®0000000000

Finite Automata: Terminology and Notation

!
OSEmO Ot

0

m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}

DFAs
00@0000000000 000000000000

Introduction and Formal Lang

Finite Automata: Terminology and Notation

1 ' 1
oOSmO=k :
0
m states Q = {qo, 91, 92} 0(qo,0) = q1
® input alphabet ¥ = {0,1} 9(qo,1) = qo
m transition function ¢ 0(g1,0) = g2
6(q1,1) = qo
(g2,0) = q2
(g2,1) = qo

m states @ = {qo, g1, G2}
® input alphabet ¥ = {0,1}

m transition function §

table form of §

DFAs A OFAs NFAs Summar

O0@0000000000 [e]e]e} Y0000 (e} OC

m states Q = {qo, g1, G2} 6(q0,0) = q1

® input alphabet ¥ = {0,1} 9(qo,1) = qo

m transition function ¢ 0(g1,0) = g2

m start state qg 0(q1,1) = qo NP
6(q2,0) = q2
6(q2,1) = qo

DFAs A OFAs NFAs Summar

O0@0000000000 [e]e]e} Y0000 (e} OC

m states Q = {qo, g1, G2} 6(q0,0) = q1
® input alphabet ¥ = {0,1} 9(qo,1) = qo
m transition function ¢ 0(g1,0) = g2
m start state qg 0(q1,1) = qo NP
m accept states {q»} 0(g2,0) = g2
6(q2,1) = qo

DFAs
0008000000000

Introduction

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M={(Q,X,d,qo, F) where

Q is the finite set of states

2 is the input alphabet

d: Q x X — Q is the transition function
go € Q is the start state

F C Q is the set of accept states (or final states)

German: deterministischer e_ndlicher Autom_@t, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,

Startzustand, Endzustinde

ets and Formal Languages DFAs

O000@00000000

Exercise

Give a formal definition of the following DFA
(for the transition function, only exemplarily
specify the transitions for state qo): %,

b -2
C a
b,c a a,b,c

DFAs
0000000000000

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Introduction Alphabets and Formal Languages ~ DFAs A) NFAs

Summar
0000080000000

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Definition (Words Accepted by a DFA)

DFA M = (Q, %, 4, qo, F) accepts the word w = a1 ... a,
if there is a sequence of states g, ..., q, € Q with

Q 9 = qo,

Q 4(q,_q,ai)) =gl forall i e {1,...,n} and

Q qg,€F.

German: DFA akzeptiert das Wort

ts and Formal Languages DFAs As Summary

O00000@000000

Example

. ' . accepts: does not accept:

1 (1)8010100 ioo1o1o

5 01000 010001

Introduction Alphabets and Formal Languages DFAs A DFAs As Summar
0000000800000)0O0000 0O« 5 0o

Exercise (slido)

Consider again the following DFA:

b
OB0=0=0
— a1 qz qs3
|/
0E0=0 ”
b,c a a,b,c %

Which of the following words does it accept?

m abc
m ababcb
m babbc

DFAs
0000000080000

DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton.
The language recognized by M is defined as
L(M)={w € £* | w is accepted by M}.

nd Formal La DFAs

0000000008000

Example

and Formal Languages DFAs
0000000008000

Example

The DFA recognizes the language
{w € {0,1}* | w ends with 00}.

Introduction

0000000000800

Exercise

Specify a DFA with input alphabet ¥ = {0,1}
that recognizes the following language:

L={w e {0,1}" | every 0 in w is directly followed by a 1}

Eg 001 ¢ L, 11€L, 101 €L

and Formal Languages DFAs

0000000000080

A Note on Terminology

m In the literature, “accept” and “recognize” are sometimes
used synonymously or the other way around.
DFA recognizes a word or accepts a language.

m We try to stay consistent using the previous definitions
(following the text book by Sipser).

DFAs
000000000000

Questions

N

~

Questions?

NFAs
©00000000000

NFAs

NFAs
0®0000000000

Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are
nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net

ets and Formal Languages DF, NFAs
) o] 008000000000

In what Sense is a DFA Deterministic?

m A DFA has a single fixed state
from which the computation starts.

m When a DFA is in a specific state and reads an input symbol,
we know what the next state will be.

m For a given input, the entire computation is determined.

m This is a deterministic computation.

NFAs
000®00000000

Nondeterministic Finite Automata: Example

0,1
*@\E&)@ : @

differences to DFAs:

and Formal Languages NFAs
(o] o] 000800000000

Nondeterministic Finite Automata: Example

0,1

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X

and Formal Languages NFAs
(o] o] 000800000000

Nondeterministic Finite Automata: Example

0,1

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X

m c-transitions can be taken without “consuming” a symbol
from the input

NFAs

ets and Formal Languages DF,
000800000000

Nondeterministic Finite Automata: Example

0,1

differences to DFAs:

m transition function § can lead to
zero or more successor states for the same a € X

m c-transitions can be taken without “consuming” a symbol
from the input

m the automaton accepts a word if there is
at least one accepting sequence of states

Introduction Alphabets and Formal Languages DFA NFAs) As Summar

[e]e]e]e] lelele]ele]e]e]

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M={(Q,X,d,qo, F) where

Q is the finite set of states
Y is the input alphabet

d:Q x (XU{e}) = P(Q) is the transition function
(mapping to the power set of Q)

go € Q is the start state
F C Q is the set of accept states

German: nichtdeterministischer endlicher Automat

NFAs
0000®0000000

Introduction

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M={(Q,X,d,qo, F) where

Q is the finite set of states
Y is the input alphabet

d:Q x (XU{e}) = P(Q) is the transition function
(mapping to the power set of Q)

go € Q is the start state
m F C Q is the set of accept states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

NFAs
00000®000000

Accepting Computation: Example

() —= % ° (&)} —2 @ w = 0100

NN/

€

~ computation tree on blackboard

NFAs
00000®000000

Accepting Computation: Example

() —= @ 0 @ 0 @ w = 0100

€

and Formal Languages NFAs

000000800000

e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.

/ NFAs
: 0000000000000 OOOOOOe00000

Introduction

e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.

Definition (e-closure)

For NFA M = (Q, X, 0, qo, F) and state g € Q, state p is in the
e-closure E(q) of g iff there is a sequence of states qp, . . ., g, with

Q q=gq
Q g/ €0(q._q,¢) forallie{l,...,n} and
Q@ q,=p.]

Introduction Alphabets and Formal Languages NFAs DFAS As Summar

000000800000

e-closure of a State

For a state g € Q, we write E(q) to denote the set of states that
are reachable from g via e-transitions in 4.

Definition (e-closure)

For NFA M = (Q, X, 0, qo, F) and state g € Q, state p is in the
e-closure E(q) of g iff there is a sequence of states qp, . . ., g, with

Q@ q=aq
Q g/ €0(q._q,¢) forallie{l,...,n} and
Q q,=p

q € E(q) for every state g

Introduction Alp and Forma res)FAs NFAs
0000C 0000000000000 OO0OOOOe0000 00000000

NFA: Accepted Words

Definition (Words Accepted by an NFA)

NFA M = (Q, %, 4, qo, F) accepts the word w = a3 ... a,
if there is a sequence of states g, ..., q, € Q with

Q a5 € E(qo),
@ q; € Uges(q ,,a) E(q) forall i€ {1,...,n} and
Q gq,cF.

Introduction s and Formal Languages D NFAs

000000008000

Example: Accepted Words

0,1
: /O\ o (N0 (=)

—>(9o q1 qz a3
Q\kj/u

e
accepts: does not accept:
0 5
10010100 1001010
01000 010001

Introduction \ ts and Formal Languages DFA NFAs IFAs Summar

0000000000000 000000000 e00

Exercise (slido)

Does this NFA accept input 010107

NFAs
000000000000

NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet .

The language recognized by M is defined as
L(M) ={w € ©* | w is accepted by M}.

ts and Formal Languages D) NFAs As Summary

00000000000 e

Example: Recognized Language

NS € @ 0 @ 0 @

Introduction Alphabets and Formal Languages DF/ NFAs

00000 © 00000000 00000000000e

Example: Recognized Language

0,1
. /O\ o (N o =)
—>(qo q1 a2 q3
N "/
€

The NFA recognizes the language
{w € {0,1}* | w = 0 or w ends with 00}.

DFAs vs. NFAs
00000000

DFAs vs. NFAs

DFAs vs. NFAs
0e000000

DFAs are No More Powerful than NFAs

Observation
Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
5(q,a) = ¢’ with §(q,a) = {q'}.

DFAs vs. NFAs
[e]e] lelelele]e]

Question

DFAs are
no more powerful than NFAs.
But are there languages
that can be recognized
by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

DFAs vs. NFAs
[e]e]e] lelele]e]

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Introduction Alphabets and Formal Languages ~ DFA

NFA: DFAs vs. NFAs Summar
YoloTel 000@0000

DFA

NFAs are No More Powerful

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let's first have a look at
the idea by means of an example (on the blackboard).

DFAs vs. NFAs
[e]e]e]e] Telele]

Conversion of an NFA to an Equivalent DFA: Example

0,1

Intr du tion A\ph abets and Formal Languag OFAs DFAs vs. NFAs Summary
00)00000000) 00000 00000e00

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof
For every NFA M = (Q, X, d, qo, F) we can construct
a DFA M’ = (@', %, &, gy, F') with £(M) = L(M").
Here M’ is defined as follows:

B Q :=P(Q) (the power set of Q)

= qo := E(q0)

m FF:={QCQ|ANF#0}

m Forall Q€ Q" 6'(Q,a) := Ugeq Uges(q.0) E(G)

\

Intr du tion A\ph abets and Formal L. es) As DFAs vs. NFAs Summary

00000e00

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1ay...a, € ¥*:

w € L(M)
iff there is a sequence of states pg, p1, ..., pn With
po € E(qo), pn € F and
Pi € Uges(p;1,an) E(q) forall i € {1,..., n}
iff there is a sequence of subsets Qp, 91, ..., 9, with
Qo =qp Qn € F and §'(Qj_1,a;) = Q; forall i € {1,...,n}
iff w e L(M) O]

Introduction

NFAs a

Alphabets and Formal Languages DFA

NFAs DFAs vs. NFAs
000000000« 00000080

re More Compact than DFAs

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

Introduction

NFAs a

Alphabets and Formal Languages DFA-s

NFAs DFAs vs. NFAs
000000000« 00000000

re More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>(9o q1 q2 9k
6 / N

Introduction

NFAs a

Alphabets and Formal Languages DFA-s

NFAs DFAs vs. NFAs
000000000« 00000000

re More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>(9o q1 q2 9k
6 / N

There is no DFA with less than 2% states that accepts Ly
(without proof).

Introduction As 4 DFAs vs. NFAs Summary

NFAs a

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>(9o q1 q2 9k
6 / N

There is no DFA with less than 2% states that accepts Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.

DFAs vs. NFAs
0000000e

Questions

N

~

Questions?

[Je]

Summary

s and Formal Languages D A As Summary

oe

Summary

m DFAs are automata where every state transition
is uniquely determined.

m NFAs can have zero, one or more transitions
for a given state and input symbol.

m NFAs can have e-transitions that can be taken without
reading a symbol from the input.

m NFAs accept a word if there is at least one
accepting sequence of states.

m DFAs and NFAs accept the same languages.

	Introduction
	

	Alphabets and Formal Languages
	

	DFAs
	

	NFAs
	

	DFAs vs. NFAs
	

	Summary
	

