Theory of Computer Science

B1. Finite Automata

Gabriele Röger

University of Basel

March 8, 2021

Introduction

Course Contents

Introduction

Parts of the course:

- A. background▷ mathematical foundations and proof techniques
- B. automata theory and formal languages(Automatentheorie und formale Sprachen)What is a computation?
- C. Turing computability (Turing-Berechenbarkeit)What can be computed at all?
- D. complexity theory (Komplexitätstheorie)▷ What can be computed efficiently?
- E. more computability theory (mehr Berechenbarkeitheorie)

 → Other models of computability

Course Contents

Introduction

Parts of the course:

- A. background
 - ▶ mathematical foundations and proof techniques
- B. automata theory and formal languages (Automatentheorie und formale Sprachen)
 - ▶ What is a computation?
- C. Turing computability (Turing-Berechenbarkeit)
 - ▷ What can be computed at all?
- D. complexity theory (Komplexitätstheorie)
 - ▶ What can be computed efficiently?
- E. more computability theory (mehr Berechenbarkeitheorie)
 - Other models of computability

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

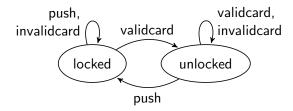
- simple access control
- card reader and push sensor
- card can either be valid or invalid

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

Introduction

- simple access control
- card reader and push sensor
- card can either be valid or invalid



Introduction

- We will not consider automata that run forever but that process a finite input sequence and then classify it as accepted or not.
- Before we get into the details, we need some background on formal languages to formalize what is a valid input sequence.

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

$$\Sigma = \{a,b\}$$

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ .

The empty word (the empty sequence of elements) is denoted by ε .

 Σ^* denotes the set of all words over Σ .

 Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

```
\begin{split} \Sigma &= \{\mathtt{a},\mathtt{b}\} \\ \Sigma^* &= \{\varepsilon,\mathtt{a},\mathtt{b},\mathtt{aa},\mathtt{ab},\mathtt{ba},\mathtt{bb},\dots \} \end{split}
```

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ .

The empty word (the empty sequence of elements) is denoted by ε .

 Σ^* denotes the set of all words over Σ .

 Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

We write |w| for the length of a word w.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

$$\begin{split} \Sigma &= \{\mathtt{a},\mathtt{b}\} \\ \Sigma^* &= \{\varepsilon,\mathtt{a},\mathtt{b},\mathtt{aa},\mathtt{ab},\mathtt{ba},\mathtt{bb},\dots\} \\ |\mathtt{aba}| &= 3,|\mathtt{b}| = 1,|\varepsilon| = 0 \end{split}$$

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ .

The empty word (the empty sequence of elements) is denoted by ε .

 Σ^* denotes the set of all words over Σ .

 Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

We write |w| for the length of a word w.

A formal language (over alphabet Σ) is a subset of Σ^* .

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

```
\Sigma = \{a, b\}

\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, \dots\}

|aba| = 3, |b| = 1, |\varepsilon| = 0
```

Example (Languages over $\Sigma = \{a, b\}$)

• $S_1 = \{a, aa, aaa, aaaa, \dots\} = \{a\}^+$

Example (Languages over $\Sigma = \{\mathtt{a},\mathtt{b}\}$)

- $S_1 = \{a, aa, aaa, aaaa, \dots\} = \{a\}^+$
- $S_2 = \Sigma^*$

- $S_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- $S_2 = \Sigma^*$
- $S_3 = \{a^nb^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$

Languages: Examples

- $S_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- $S_2 = \Sigma^*$
- $S_3 = \{a^nb^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$
- $S_4 = \{\varepsilon\}$

Languages: Examples

- $S_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- $S_2 = \Sigma^*$
- $lacksquare S_3 = \{\mathbf{a}^n \mathbf{b}^n \mid n \geq 0\} = \{\varepsilon, \mathbf{ab}, \mathbf{aabb}, \mathbf{aaabbb}, \dots\}$
- $S_4 = \{\varepsilon\}$
- $S_5 = \emptyset$

Languages: Examples

- $S_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- $S_2 = \Sigma^*$
- $S_3 = \{a^nb^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$
- $S_4 = \{\varepsilon\}$
- $S_5 = \emptyset$
- $S_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$ = $\{ \varepsilon, \text{aab}, \text{aba}, \text{baa}, \dots \}$

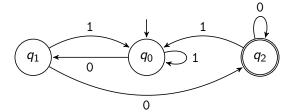
- $S_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- $S_2 = \Sigma^*$
- $S_3 = \{a^nb^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$
- $S_5 = \emptyset$
- $S_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$ = $\{ \varepsilon, \text{aab}, \text{aba}, \text{baa}, \dots \}$
- $S_7 = \{ w \in \Sigma^* \mid |w| = 3 \}$ = $\{ aaa, aab, aba, baa, bba, bab, abb, bbb \}$

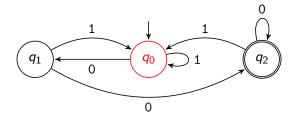
Consider $\Sigma = \{\text{push}, \text{validcard}\}.$

What is |pushvalidcard|?

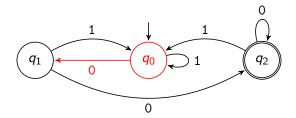
Questions?

DFAs

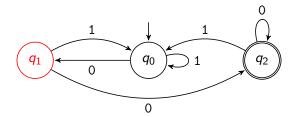




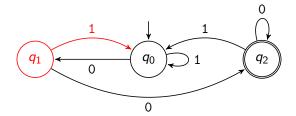
When reading the input 01100 the automaton visits the states q_0 ,



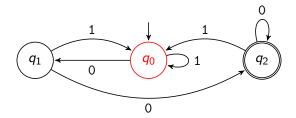
When reading the input 01100 the automaton visits the states q_0 ,



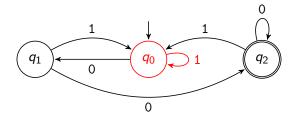
When reading the input 01100 the automaton visits the states q_0 , q_1 ,



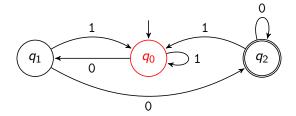
When reading the input 01100 the automaton visits the states q_0 , q_1 ,



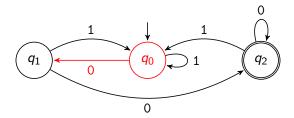
When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 ,



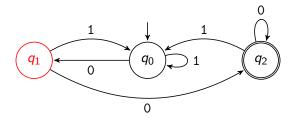
When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 ,



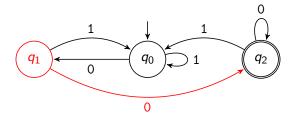
When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 ,



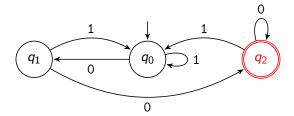
When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 ,



When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 ,

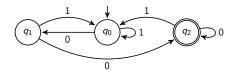


When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 ,

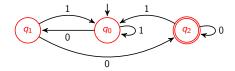


When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 , q_2 .

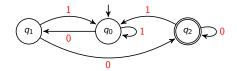
Finite Automata: Terminology and Notation



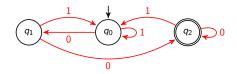
Finite Automata: Terminology and Notation



• states $Q = \{q_0, q_1, q_2\}$



- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$



- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- lacktriangle transition function δ

$$\delta(q_0,0)=q_1$$

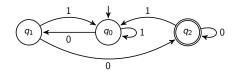
$$\delta(q_0,1)=q_0$$

$$\delta(q_1,0)=q_2$$

$$\delta(q_1,1)=q_0$$

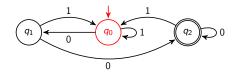
$$\delta(q_2,0)=q_2$$

$$\delta(q_2,1)=q_0$$



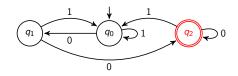
- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- lacktriangle transition function δ

$$\delta(q_0, 0) = q_1$$
 $\delta(q_0, 1) = q_0$
 $\delta(q_1, 0) = q_2$
 $\delta(q_1, 1) = q_0$
 $\delta(q_2, 0) = q_2$
 $\delta(q_2, 1) = q_0$



- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- lacktriangle transition function δ
- start state q₀

$$egin{aligned} \delta(q_0,0) &= q_1 \ \delta(q_0,1) &= q_0 \ \delta(q_1,0) &= q_2 \ \delta(q_1,1) &= q_0 \ \delta(q_2,0) &= q_2 \ \delta(q_2,1) &= q_0 \end{aligned}$$



- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- lacktriangle transition function δ
- start state *q*₀
- accept states {q₂}

$$\delta(q_0,0)=q_1$$

$$\delta(q_0,1)=q_0$$

$$\delta(q_1,0)=q_2$$

$$\delta(q_1,1)=q_0$$

$$\delta(q_2,0)=q_2$$

$$\delta(q_2,1)=q_0$$

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_0 \\ q_1 & q_2 & q_0 \\ q_2 & q_2 & q_0 \\ \end{array}$$

table form of δ

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple

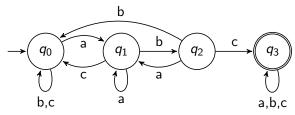
 $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is the finite set of states
- Σ is the input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $ullet q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states (or final states)

German: deterministischer endlicher Automat, Zustände, Eingabealphabet, Überführungs-/Übergangsfunktion, Startzustand, Endzustände

Exercise

Give a formal definition of the following DFA (for the transition function, only exemplarily specify the transitions for state q_0):



Intuitively, a DFA accepts a word if its computation terminates in an accept state.

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

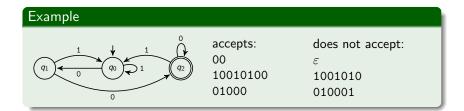
Definition (Words Accepted by a DFA)

DFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

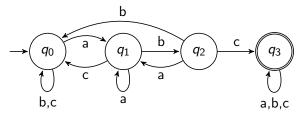
- $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, \ldots, n\}$ and
- $q'_n \in F.$

German: DFA akzeptiert das Wort

Example



Consider again the following DFA:



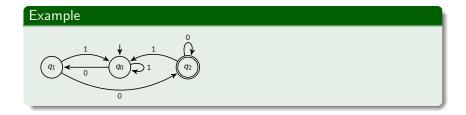
Which of the following words does it accept?

- abc
- ababcb
- babbc

Definition (Language Recognized by a DFA)

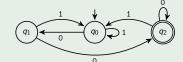
Let M be a deterministic finite automaton. The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

Example



Example

Example



The DFA recognizes the language $\{w \in \{0,1\}^* \mid w \text{ ends with } 00\}.$

Exercise

Specify a DFA with input alphabet $\Sigma = \{0,1\}$ that recognizes the following language:

 $L = \{w \in \{0,1\}^* \mid \text{ every 0 in } w \text{ is directly followed by a } 1\}$

E.g. $001 \not\in L$, $11 \in L$, $101 \in L$

A Note on Terminology

- In the literature, "accept" and "recognize" are sometimes used synonymously or the other way around.
 DFA recognizes a word or accepts a language.
- We try to stay consistent using the previous definitions (following the text book by Sipser).

Questions

Questions?

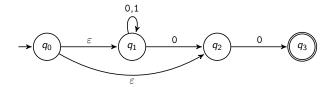
NFAs

Why are DFAs called

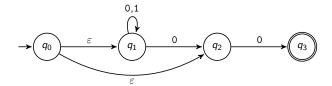
deterministic automata? What are nondeterministic automata, then?

In what Sense is a DFA Deterministic?

- A DFA has a single fixed state from which the computation starts.
- When a DFA is in a specific state and reads an input symbol, we know what the next state will be.
- For a given input, the entire computation is determined.
- This is a deterministic computation.

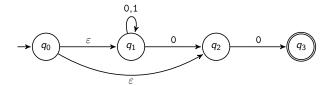


differences to DFAs:



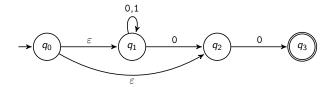
differences to DFAs:

■ transition function δ can lead to zero or more successor states for the same $a \in \Sigma$



differences to DFAs:

- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- ϵ -transitions can be taken without "consuming" a symbol from the input



differences to DFAs:

- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- $m{\varepsilon}$ -transitions can be taken without "consuming" a symbol from the input
- the automaton accepts a word if there is at least one accepting sequence of states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is the finite set of states
- lacksquare Σ is the input alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- $q_0 \in Q$ is the start state
- lacksquare $F\subseteq Q$ is the set of accept states

German: nichtdeterministischer endlicher Automat

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

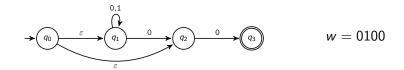
A nondeterministic finite automaton (NFA) is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is the finite set of states
- lacksquare Σ is the input alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- $q_0 \in Q$ is the start state
- lacksquare $F\subseteq Q$ is the set of accept states

German: nichtdeterministischer endlicher Automat

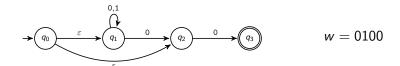
DFAs are (essentially) a special case of NFAs.

Accepting Computation: Example



 \leadsto computation tree on blackboard

Accepting Computation: Example



ε -closure of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

ε -closure of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure)

For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with

- $q_0' = q,$
- $\mathbf{Q} \ \mathbf{q}_i' \in \delta(\mathbf{q}_{i-1}', \varepsilon)$ for all $i \in \{1, \dots, n\}$ and
- **3** $q'_n = p$.

ε -closure of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure)

For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with

- $q_0' = q,$
- $\mathbf{Q} \ \mathbf{q}_i' \in \delta(\mathbf{q}_{i-1}', \varepsilon)$ for all $i \in \{1, \dots, n\}$ and
- **3** $q'_n = p$.

 $q \in E(q)$ for every state q

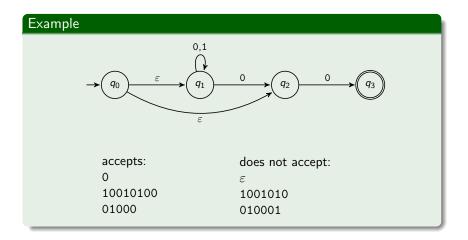
NFA: Accepted Words

Definition (Words Accepted by an NFA)

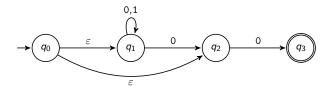
NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- $q_0' \in E(q_0),$
- $q_i' \in \bigcup_{q \in \delta(q_{i-1}', a_i)} E(q)$ for all $i \in \{1, \dots, n\}$ and
- $q_n' \in F.$

Example: Accepted Words



Exercise (slido)



Does this NFA accept input 01010?

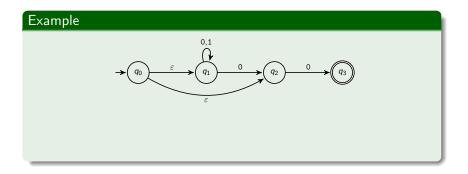
NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet Σ .

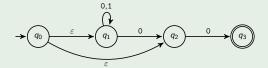
The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

Example: Recognized Language



Example: Recognized Language

Example



The NFA recognizes the language

 $\{w \in \{0,1\}^* \mid w = 0 \text{ or } w \text{ ends with } 00\}.$

DFAs vs. NFAs

Observation

Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition $\delta(q,a)=q'$ with $\delta(q,a)=\{q'\}$.

Question

DFAs are
no more powerful than NFAs.
But are there languages
that can be recognized
by an NFA but not by a DFA?

Theorem (Rabin, Scott)

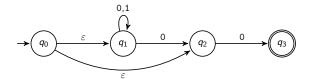
Every language recognized by an NFA is also recognized by a DFA.

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can convert an NFA to an equivalent DFA. Let's first have a look at the idea by means of an example (on the blackboard).

Conversion of an NFA to an Equivalent DFA: Example



Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ we can construct a DFA $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ with $\mathcal{L}(M) = \mathcal{L}(M')$.

- Here M' is defined as follows:
 - $Q' := \mathcal{P}(Q)$ (the power set of Q)
 - $q_0' := E(q_0)$
 - $F' := \{ \mathcal{Q} \subseteq Q \mid \mathcal{Q} \cap F \neq \emptyset \}$
 - For all $Q \in Q'$: $\delta'(Q, a) := \bigcup_{g \in Q} \bigcup_{g' \in \delta(g, a)} E(g')$

. . .

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

```
For every w=a_1a_2\dots a_n\in \Sigma^*: w\in \mathcal{L}(M) iff there is a sequence of states p_0,p_1,\dots,p_n with p_0\in E(q_0),\ p_n\in F \text{ and } p_i\in \bigcup_{q\in \delta(p_{i-1},a_i)}E(q) \text{ for all } i\in\{1,\dots,n\} iff there is a sequence of subsets \mathcal{Q}_0,\mathcal{Q}_1,\dots,\mathcal{Q}_n with \mathcal{Q}_0=q_0',\ \mathcal{Q}_n\in F' \text{ and } \delta'(\mathcal{Q}_{i-1},a_i)=\mathcal{Q}_i \text{ for all } i\in\{1,\dots,n\} iff w\in \mathcal{L}(M')
```

Example

For $k \ge 1$ consider the language

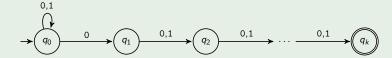
 $L_k = \{ w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0 \}.$

Example

For $k \ge 1$ consider the language

 $L_k = \{w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$

The language L_k can be accepted by an NFA with k+1 states:

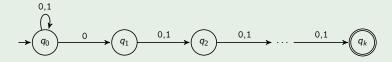


Example

For $k \ge 1$ consider the language

 $L_k = \{w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$

The language L_k can be accepted by an NFA with k+1 states:



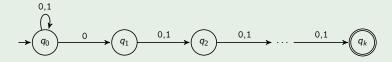
There is no DFA with less than 2^k states that accepts L_k (without proof).

Example

For $k \ge 1$ consider the language

 $L_k = \{w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$

The language L_k can be accepted by an NFA with k+1 states:



There is no DFA with less than 2^k states that accepts L_k (without proof).

NFAs can often represent languages more compactly than DFAs.

Questions

Questions?

Summary

Summary

Summary

- DFAs are automata where every state transition is uniquely determined.
- NFAs can have zero, one or more transitions for a given state and input symbol.
- NFAs can have ϵ -transitions that can be taken without reading a symbol from the input.
- NFAs accept a word if there is at least one accepting sequence of states.
- DFAs and NFAs accept the same languages.