Theory of Computer Science
 B1. Finite Automata

Gabriele Röger

University of Basel

March 8, 2021

Introduction

Course Contents

Parts of the course:
A. background
\triangleright mathematical foundations and proof techniques
B. automata theory and formal languages (Automatentheorie und formale Sprachen)
\triangleright What is a computation?
C. Turing computability (Turing-Berechenbarkeit)
\triangleright What can be computed at all?
D. complexity theory (Komplexitätstheorie)
\triangleright What can be computed efficiently?
E. more computability theory (mehr Berechenbarkeitheorie)
\triangleright Other models of computability

Course Contents

Parts of the course:
A. background
\triangleright mathematical foundations and proof techniques
B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
\triangleright What is a computation?
C. Turing computability (Turing-Berechenbarkeit)
\triangleright What can be computed at all?
D. complexity theory (Komplexitätstheorie)
\triangleright What can be computed efficiently?
E. more computability theory (mehr Berechenbarkeitheorie)
\triangleright Other models of computability

A Controller for a Turnstile

- simple access control
- card reader and push sensor
- card can either be valid or invalid

CC BY-SA 3.0, author: Stolbovsky

A Controller for a Turnstile

- simple access control
- card reader and push sensor
- card can either be valid or invalid

CC BY-SA 3.0, author: Stolbovsky

- Finite automata are a good model for computers with very limited memory.
Where can the turnstile controller store information about what it has seen in the past?
■ We will not consider automata that run forever but that process a finite input sequence and then classify it as accepted or not.
■ Before we get into the details, we need some background on formal languages to formalize what is a valid input sequence.

Alphabets and Formal Languages

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)
An alphabet Σ is a finite non-empty set of symbols.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Example

$\Sigma=\{\mathrm{a}, \mathrm{b}\}$

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.
A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ^{*} denotes the set of all words over Σ.
$\Sigma^{+}\left(=\Sigma^{*} \backslash\{\varepsilon\}\right)$ denotes the set of all non-empty words over Σ.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Example

$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\Sigma^{*}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}$

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.
A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ^{*} denotes the set of all words over Σ.
$\Sigma^{+}\left(=\Sigma^{*} \backslash\{\varepsilon\}\right)$ denotes the set of all non-empty words over Σ.
We write $|w|$ for the length of a word w.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Example

$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\Sigma^{*}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}$
$|\mathrm{aba}|=3,|\mathrm{~b}|=1,|\varepsilon|=0$

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.
A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ^{*} denotes the set of all words over Σ.
$\Sigma^{+}\left(=\Sigma^{*} \backslash\{\varepsilon\}\right)$ denotes the set of all non-empty words over Σ.
We write $|w|$ for the length of a word w.
A formal language (over alphabet Σ) is a subset of Σ^{*}.
German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Example

$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\Sigma^{*}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}$
$|\mathrm{aba}|=3,|\mathrm{~b}|=1,|\varepsilon|=0$

Languages: Examples

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $S_{1}=\{$ a, aa, aaa, aaaa, $\ldots\}=\{a\}^{+}$

Languages: Examples

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $S_{1}=\{$ a, aa, aaa, aaaa, $\ldots\}=\{a\}^{+}$
- $S_{2}=\Sigma^{*}$

Languages: Examples

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $S_{1}=\{$ a, aa, aaa, aaaa, $\ldots\}=\{a\}^{+}$
- $S_{2}=\Sigma^{*}$
- $S_{3}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}=\{\varepsilon, \mathrm{ab}$, aabb, aaabbb,$\ldots\}$

Languages: Examples

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $S_{1}=\{$ a, aa, aaa, aaaa, $\ldots\}=\{a\}^{+}$
- $S_{2}=\Sigma^{*}$

■ $S_{3}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}=\{\varepsilon, \mathrm{ab}$, aabb, aaabbb,$\ldots\}$

- $S_{4}=\{\varepsilon\}$

Languages: Examples

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $S_{1}=\{$ a, aa, aaa, aaaa, $\ldots\}=\{a\}^{+}$
- $S_{2}=\Sigma^{*}$
- $S_{3}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}=\{\varepsilon, \mathrm{ab}$, aabb, aaabbb,$\ldots\}$
- $S_{4}=\{\varepsilon\}$
- $S_{5}=\emptyset$

Languages: Examples

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

- $S_{1}=\{$ a, aa, aaa, aaaa, $\ldots\}=\{a\}^{+}$
- $S_{2}=\Sigma^{*}$

■ $S_{3}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}=\{\varepsilon, \mathrm{ab}$, aabb, aaabbb,$\ldots\}$

- $S_{4}=\{\varepsilon\}$
- $S_{5}=\emptyset$
- $S_{6}=\left\{w \in \Sigma^{*} \mid w\right.$ contains twice as many as as bs $\}$ $=\{\varepsilon$, aab, aba, baa, $\ldots\}$

Languages: Examples

Example (Languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$)

■ $S_{1}=\{$ a, aa, aaa, aaaa, $\ldots\}=\{a\}^{+}$

- $S_{2}=\Sigma^{*}$

■ $S_{3}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}=\{\varepsilon, \mathrm{ab}$, aabb, aaabbb,$\ldots\}$

- $S_{4}=\{\varepsilon\}$
- $S_{5}=\emptyset$
- $S_{6}=\left\{w \in \Sigma^{*} \mid w\right.$ contains twice as many as as bs $\}$ $=\{\varepsilon$, aab, aba, baa, $\ldots\}$
■ $S_{7}=\left\{w \in \Sigma^{*}| | w \mid=3\right\}$
$=\{\mathrm{aaa}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bba}, \mathrm{bab}, \mathrm{abb}, \mathrm{bbb}\}$

Exercise (slido)

Consider $\Sigma=\{$ push, validcard $\}$.
What is |pushvalidcard|?

Questions

Questions?

DFAs

Finite Automaton: Example

Finite Automaton: Example

When reading the input 01100 the automaton visits the states 90 ,

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q0,

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_{0}, q_{1},

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_{0}, q_{1},

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_{0}, q_{1}, q_{0},

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_{0}, q_{1}, q_{0},

Finite Automaton: Example

When reading the input 01100 the automaton visits the states $q_{0}, q_{1}, q_{0}, q_{0}$,

Finite Automaton: Example

When reading the input 01100 the automaton visits the states $q_{0}, q_{1}, q_{0}, q_{0}$,

Finite Automaton: Example

When reading the input 01100 the automaton visits the states $q_{0}, q_{1}, q_{0}, q_{0}, q_{1}$,

Finite Automaton: Example

When reading the input 01100 the automaton visits the states $q_{0}, q_{1}, q_{0}, q_{0}, q_{1}$,

Finite Automaton: Example

When reading the input 01100 the automaton visits the states $q_{0}, q_{1}, q_{0}, q_{0}, q_{1}, q_{2}$.

Finite Automata: Terminology and Notation

Finite Automata: Terminology and Notation

- states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$

Finite Automata: Terminology and Notation

- states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- input alphabet $\Sigma=\{0,1\}$

Finite Automata: Terminology and Notation

- states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$

$$
\delta\left(q_{0}, 0\right)=q_{1}
$$

- input alphabet $\Sigma=\{0,1\}$

$$
\delta\left(q_{0}, 1\right)=q_{0}
$$

- transition function δ

$$
\delta\left(q_{1}, 0\right)=q_{2}
$$

$$
\delta\left(q_{1}, 1\right)=q_{0}
$$

$$
\delta\left(q_{2}, 0\right)=q_{2}
$$

$$
\delta\left(q_{2}, 1\right)=q_{0}
$$

Finite Automata: Terminology and Notation

- states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- input alphabet $\Sigma=\{0,1\}$
- transition function δ

$$
\begin{aligned}
& \delta\left(q_{0}, 0\right)=q_{1} \\
& \delta\left(q_{0}, 1\right)=q_{0} \\
& \delta\left(q_{1}, 0\right)=q_{2} \\
& \delta\left(q_{1}, 1\right)=q_{0} \\
& \delta\left(q_{2}, 0\right)=q_{2} \\
& \delta\left(q_{2}, 1\right)=q_{0}
\end{aligned}
$$

δ	0	1
q_{0}	q_{1}	q_{0}
q_{1}	q_{2}	q_{0}
q_{2}	q_{2}	q_{0}

table form of δ

Finite Automata: Terminology and Notation

- states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- input alphabet $\Sigma=\{0,1\}$
- transition function δ
- start state q_{0}

$$
\begin{aligned}
& \delta\left(q_{0}, 0\right)=q_{1} \\
& \delta\left(q_{0}, 1\right)=q_{0} \\
& \delta\left(q_{1}, 0\right)=q_{2} \\
& \delta\left(q_{1}, 1\right)=q_{0} \\
& \delta\left(q_{2}, 0\right)=q_{2} \\
& \delta\left(q_{2}, 1\right)=q_{0}
\end{aligned}
$$

δ	0	1
q_{0}	q_{1}	q_{0}
q_{1}	q_{2}	q_{0}
q_{2}	q_{2}	q_{0}

table form of δ

Finite Automata: Terminology and Notation

- states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- input alphabet $\Sigma=\{0,1\}$

$$
\delta\left(q_{0}, 1\right)=q_{0}
$$

- transition function δ
- start state q_{0}
- accept states $\left\{q_{2}\right\}$

$$
\delta\left(q_{0}, 0\right)=q_{1}
$$

$$
\delta\left(q_{1}, 0\right)=q_{2}
$$

$$
\delta\left(q_{1}, 1\right)=q_{0}
$$

$$
\delta\left(q_{2}, 0\right)=q_{2}
$$

δ	0	1
q_{0}	q_{1}	q_{0}
q_{1}	q_{2}	q_{0}
q_{2}	q_{2}	q_{0}

table form of δ

$$
\delta\left(q_{2}, 1\right)=q_{0}
$$

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ where

- Q is the finite set of states
$\square \Sigma$ is the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states (or final states)

German: deterministischer endlicher Automat, Zustände, Eingabealphabet, Überführungs-/Übergangsfunktion, Startzustand, Endzustände

Exercise

Give a formal definition of the following DFA (for the transition function, only exemplarily specify the transitions for state q_{0}):

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

Definition (Words Accepted by a DFA)

DFA $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ accepts the word $w=a_{1} \ldots a_{n}$ if there is a sequence of states $q_{0}^{\prime}, \ldots, q_{n}^{\prime} \in Q$ with
(1) $q_{0}^{\prime}=q_{0}$,
(2) $\delta\left(q_{i-1}^{\prime}, a_{i}\right)=q_{i}^{\prime}$ for all $i \in\{1, \ldots, n\}$ and
(3) $q_{n}^{\prime} \in F$.

German: DFA akzeptiert das Wort

Example

Example

does not accept: ε
1001010 010001

Exercise (slido)

Consider again the following DFA:

Which of the following words does it accept?

- abc
- ababcb
- babbc

DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton.
The language recognized by M is defined as
$\mathcal{L}(M)=\left\{w \in \Sigma^{*} \mid w\right.$ is accepted by $\left.M\right\}$.

Example

Example

Example

Example

The DFA recognizes the language $\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with 00$\}$.

Exercise

Specify a DFA with input alphabet $\Sigma=\{0,1\}$ that recognizes the following language:
$L=\left\{w \in\{0,1\}^{*} \mid\right.$ every 0 in w is directly followed by a 1$\}$
E.g. $001 \notin L, 11 \in L, 101 \in L$

A Note on Terminology

■ In the literature, "accept" and "recognize" are sometimes used synonymously or the other way around.
DFA recognizes a word or accepts a language.
■ We try to stay consistent using the previous definitions (following the text book by Sipser).

Questions

Questions?

NFAs

Nondeterministic Finite Automata

\square

In what Sense is a DFA Deterministic?

- A DFA has a single fixed state from which the computation starts.
■ When a DFA is in a specific state and reads an input symbol, we know what the next state will be.

■ For a given input, the entire computation is determined.
■ This is a deterministic computation.

Nondeterministic Finite Automata: Example

differences to DFAs:

Nondeterministic Finite Automata: Example

differences to DFAs:

- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$

Nondeterministic Finite Automata: Example

differences to DFAs:

- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- ε-transitions can be taken without "consuming" a symbol from the input

Nondeterministic Finite Automata: Example

differences to DFAs:

- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- ε-transitions can be taken without "consuming" a symbol from the input
- the automaton accepts a word if there is at least one accepting sequence of states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5 -tuple
$M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ where

- Q is the finite set of states

■ Σ is the input alphabet
■ $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)

- $q_{0} \in Q$ is the start state

■ $F \subseteq Q$ is the set of accept states
German: nichtdeterministischer endlicher Automat

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5 -tuple
$M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ where

- Q is the finite set of states

■ Σ is the input alphabet
■ $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)

- $q_{0} \in Q$ is the start state

■ $F \subseteq Q$ is the set of accept states
German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

Accepting Computation: Example

$$
w=0100
$$

\rightsquigarrow computation tree on blackboard

Accepting Computation: Example

$$
w=0100
$$

ε-closure of a State

For a state $q \in Q$, we write $E(q)$ to denote the set of states that are reachable from q via ε-transitions in δ.

ε-closure of a State

For a state $q \in Q$, we write $E(q)$ to denote the set of states that are reachable from q via ε-transitions in δ.

Definition (ε-closure)

For NFA $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ and state $q \in Q$, state p is in the ε-closure $E(q)$ of q iff there is a sequence of states $q_{0}^{\prime}, \ldots, q_{n}^{\prime}$ with
(1) $q_{0}^{\prime}=q$,
(2) $q_{i}^{\prime} \in \delta\left(q_{i-1}^{\prime}, \varepsilon\right)$ for all $i \in\{1, \ldots, n\}$ and
(3) $q_{n}^{\prime}=p$.

ε-closure of a State

For a state $q \in Q$, we write $E(q)$ to denote the set of states that are reachable from q via ε-transitions in δ.

Definition (ε-closure)

For NFA $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ and state $q \in Q$, state p is in the ε-closure $E(q)$ of q iff there is a sequence of states $q_{0}^{\prime}, \ldots, q_{n}^{\prime}$ with
(1) $q_{0}^{\prime}=q$,
(2) $q_{i}^{\prime} \in \delta\left(q_{i-1}^{\prime}, \varepsilon\right)$ for all $i \in\{1, \ldots, n\}$ and
(3) $q_{n}^{\prime}=p$.
$q \in E(q)$ for every state q

NFA: Accepted Words

Definition (Words Accepted by an NFA)

NFA $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ accepts the word $w=a_{1} \ldots a_{n}$ if there is a sequence of states $q_{0}^{\prime}, \ldots, q_{n}^{\prime} \in Q$ with
(1) $q_{0}^{\prime} \in E\left(q_{0}\right)$,
(2) $q_{i}^{\prime} \in \bigcup_{q \in \delta\left(q_{i-1}^{\prime}, a_{i}\right)} E(q)$ for all $i \in\{1, \ldots, n\}$ and
(3) $q_{n}^{\prime} \in F$.

Example: Accepted Words

Example

$$
\begin{aligned}
& \text { accepts: } \\
& 0 \\
& 10010100 \\
& 01000
\end{aligned}
$$

does not accept:
ε
1001010
010001

Exercise (slido)

Does this NFA accept input 01010?

NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet Σ.
The language recognized by M is defined as $\mathcal{L}(M)=\left\{w \in \Sigma^{*} \mid w\right.$ is accepted by $\left.M\right\}$.

Example: Recognized Language

Example

Example: Recognized Language

Example

The NFA recognizes the language $\left\{w \in\{0,1\}^{*} \mid w=0\right.$ or w ends with 00$\}$.

DFAs vs. NFAs

DFAs are No More Powerful than NFAs

Observation
Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition $\delta(q, a)=q^{\prime}$ with $\delta(q, a)=\left\{q^{\prime}\right\}$.

Question

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can convert an NFA to an equivalent DFA. Let's first have a look at the idea by means of an example (on the blackboard).

Conversion of an NFA to an Equivalent DFA: Example

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ we can construct a DFA $M^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right\rangle$ with $\mathcal{L}(M)=\mathcal{L}\left(M^{\prime}\right)$. Here M^{\prime} is defined as follows:

- $Q^{\prime}:=\mathcal{P}(Q)$ (the power set of Q)
- $q_{0}^{\prime}:=E\left(q_{0}\right)$
- $F^{\prime}:=\{\mathcal{Q} \subseteq Q \mid \mathcal{Q} \cap F \neq \emptyset\}$
- For all $\mathcal{Q} \in Q^{\prime}: \delta^{\prime}(\mathcal{Q}, a):=\bigcup_{q \in \mathcal{Q}} \bigcup_{q^{\prime} \in \delta(q, a)} E\left(q^{\prime}\right)$

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every $w=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}$:

$$
w \in \mathcal{L}(M)
$$

iff there is a sequence of states $p_{0}, p_{1}, \ldots, p_{n}$ with

$$
\begin{aligned}
& p_{0} \in E\left(q_{0}\right), p_{n} \in F \text { and } \\
& p_{i} \in \bigcup_{q \in \delta\left(p_{i-1}, a_{i}\right)} E(q) \text { for all } i \in\{1, \ldots, n\}
\end{aligned}
$$

iff there is a sequence of subsets $\mathcal{Q}_{0}, \mathcal{Q}_{1}, \ldots, \mathcal{Q}_{n}$ with

$$
\mathcal{Q}_{0}=q_{0}^{\prime}, \mathcal{Q}_{n} \in F^{\prime} \text { and } \delta^{\prime}\left(\mathcal{Q}_{i-1}, a_{i}\right)=\mathcal{Q}_{i} \text { for all } i \in\{1, \ldots, n\}
$$

iff $w \in \mathcal{L}\left(M^{\prime}\right)$

NFAs are More Compact than DFAs

Example

For $k \geq 1$ consider the language
$L_{k}=\left\{w \in\{0,1\}^{*}| | w \mid \geq k\right.$ and the k-th last symbol of w is 0$\}$.

NFAs are More Compact than DFAs

Example

For $k \geq 1$ consider the language
$L_{k}=\left\{w \in\{0,1\}^{*}| | w \mid \geq k\right.$ and the k-th last symbol of w is 0$\}$.
The language L_{k} can be accepted by an NFA with $k+1$ states:

NFAs are More Compact than DFAs

Example

For $k \geq 1$ consider the language
$L_{k}=\left\{w \in\{0,1\}^{*}| | w \mid \geq k\right.$ and the k-th last symbol of w is 0$\}$.
The language L_{k} can be accepted by an NFA with $k+1$ states:

There is no DFA with less than 2^{k} states that accepts L_{k} (without proof).

NFAs are More Compact than DFAs

Example

For $k \geq 1$ consider the language
$L_{k}=\left\{w \in\{0,1\}^{*}| | w \mid \geq k\right.$ and the k-th last symbol of w is 0$\}$.
The language L_{k} can be accepted by an NFA with $k+1$ states:

There is no DFA with less than 2^{k} states that accepts L_{k} (without proof).

NFAs can often represent languages more compactly than DFAs.

Questions

Questions?

Summary

Summary

■ DFAs are automata where every state transition is uniquely determined.

■ NFAs can have zero, one or more transitions for a given state and input symbol.

- NFAs can have ϵ-transitions that can be taken without reading a symbol from the input.
- NFAs accept a word if there is at least one accepting sequence of states.
■ DFAs and NFAs accept the same languages.

