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B1. Finite Automata Introduction

B1.1 Introduction
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B1. Finite Automata Introduction

Course Contents

Parts of the course:

A. background
. mathematical foundations and proof techniques

B. automata theory and formal languages
(Automatentheorie und formale Sprachen)
. What is a computation?

C. Turing computability (Turing-Berechenbarkeit)
. What can be computed at all?

D. complexity theory (Komplexitätstheorie)
. What can be computed efficiently?

E. more computability theory (mehr Berechenbarkeitheorie)
. Other models of computability

Gabriele Röger (University of Basel) Theory of Computer Science March 8, 2021 4 / 45



B1. Finite Automata Introduction

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

I simple access control

I card reader and push sensor

I card can either be valid or invalid

locked unlocked

push

validcard
push,

invalidcard
validcard,
invalidcard
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B1. Finite Automata Introduction

I Finite automata are a good model for computers
with very limited memory.
Where can the turnstile controller store information
about what it has seen in the past?

I We will not consider automata that run forever
but that process a finite input sequence and
then classify it as accepted or not.

I Before we get into the details, we need some background on
formal languages to formalize what is a valid input sequence.
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B1. Finite Automata Alphabets and Formal Languages

B1.2 Alphabets and Formal
Languages
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B1. Finite Automata Alphabets and Formal Languages

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Example

Σ = {a, b}
Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }
|aba| = 3, |b| = 1, |ε| = 0
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B1. Finite Automata Alphabets and Formal Languages

Languages: Examples

Example (Languages over Σ = {a, b})
I S1 = {a, aa, aaa, aaaa, . . . } = {a}+

I S2 = Σ∗

I S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
I S4 = {ε}
I S5 = ∅
I S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
I S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}
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B1. Finite Automata Alphabets and Formal Languages

Exercise (slido)

Consider Σ = {push, validcard}.

What is |pushvalidcard|?
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B1. Finite Automata DFAs

B1.3 DFAs
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B1. Finite Automata DFAs

Finite Automaton: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0, q0, q1, q2.
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B1. Finite Automata DFAs

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

I states Q = {q0, q1, q2}
I input alphabet Σ = {0, 1}
I transition function δ

I start state q0
I accept states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ
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B1. Finite Automata DFAs

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M = 〈Q,Σ, δ, q0,F 〉 where

I Q is the finite set of states

I Σ is the input alphabet

I δ : Q × Σ→ Q is the transition function

I q0 ∈ Q is the start state

I F ⊆ Q is the set of accept states (or final states)

German: deterministischer endlicher Automat, Zustände,
German: Eingabealphabet, Überführungs-/Übergangsfunktion,

German: Startzustand, Endzustände
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B1. Finite Automata DFAs

Exercise

Give a formal definition of the following DFA
(for the transition function, only exemplarily
specify the transitions for state q0):

q0 q1 q2 q3

b,c

a

a

b

c a

b

c

a,b,c
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B1. Finite Automata DFAs

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Definition (Words Accepted by a DFA)

DFA M = 〈Q,Σ, δ, q0,F 〉 accepts the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 = q0,

2 δ(q′i−1, ai ) = q′i for all i ∈ {1, . . . , n} and

3 q′n ∈ F .

German: DFA akzeptiert das Wort
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B1. Finite Automata DFAs

Example

Example

q0q1 q2
0

1

0

1

0

1
accepts:
00

10010100

01000

does not accept:
ε
1001010

010001

Gabriele Röger (University of Basel) Theory of Computer Science March 8, 2021 17 / 45



B1. Finite Automata DFAs

Exercise (slido)

Consider again the following DFA:

q0 q1 q2 q3

b,c

a

a

b

c a

b

c

a,b,c

Which of the following words does it accept?

I abc

I ababcb

I babbc
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B1. Finite Automata DFAs

DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton.
The language recognized by M is defined as
L(M) = {w ∈ Σ∗ | w is accepted by M}.
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B1. Finite Automata DFAs

Example

Example

q0q1 q2
0

1

0

1

0

1
The DFA recognizes the language
{w ∈ {0, 1}∗ | w ends with 00}.
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B1. Finite Automata DFAs

Exercise

Specify a DFA with input alphabet Σ = {0, 1}
that recognizes the following language:

L = {w ∈ {0, 1}∗ | every 0 in w is directly followed by a 1}

E.g. 001 6∈ L, 11 ∈ L, 101 ∈ L
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B1. Finite Automata DFAs

A Note on Terminology

I In the literature, “accept” and “recognize” are sometimes
used synonymously or the other way around.
DFA recognizes a word or accepts a language.

I We try to stay consistent using the previous definitions
(following the text book by Sipser).
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B1. Finite Automata NFAs

B1.4 NFAs
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B1. Finite Automata NFAs

Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are

nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Gabriele Röger (University of Basel) Theory of Computer Science March 8, 2021 24 / 45



B1. Finite Automata NFAs

In what Sense is a DFA Deterministic?

I A DFA has a single fixed state
from which the computation starts.

I When a DFA is in a specific state and reads an input symbol,
we know what the next state will be.

I For a given input, the entire computation is determined.

I This is a deterministic computation.
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B1. Finite Automata NFAs

Nondeterministic Finite Automata: Example

q0 q1 q2 q3
ε

ε

0

0,1

0

differences to DFAs:

I transition function δ can lead to
zero or more successor states for the same a ∈ Σ

I ε-transitions can be taken without “consuming” a symbol
from the input

I the automaton accepts a word if there is
at least one accepting sequence of states
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B1. Finite Automata NFAs

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M = 〈Q,Σ, δ, q0,F 〉 where

I Q is the finite set of states

I Σ is the input alphabet

I δ : Q × (Σ ∪ {ε})→ P(Q) is the transition function
(mapping to the power set of Q)

I q0 ∈ Q is the start state

I F ⊆ Q is the set of accept states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.
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B1. Finite Automata NFAs

Accepting Computation: Example

q0 q1 q2 q3
ε

ε

0

0,1

0 w = 0100

 computation tree on blackboard
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B1. Finite Automata NFAs

ε-closure of a State

For a state q ∈ Q, we write E (q) to denote the set of states that
are reachable from q via ε-transitions in δ.

Definition (ε-closure)

For NFA M = 〈Q,Σ, δ, q0,F 〉 and state q ∈ Q, state p is in the
ε-closure E (q) of q iff there is a sequence of states q′0, . . . , q

′
n with

1 q′0 = q,

2 q′i ∈ δ(q′i−1, ε) for all i ∈ {1, . . . , n} and

3 q′n = p.

q ∈ E (q) for every state q
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B1. Finite Automata NFAs

NFA: Accepted Words

Definition (Words Accepted by an NFA)

NFA M = 〈Q,Σ, δ, q0,F 〉 accepts the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 ∈ E (q0),

2 q′i ∈
⋃

q∈δ(q′i−1,ai )
E (q) for all i ∈ {1, . . . , n} and

3 q′n ∈ F .
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B1. Finite Automata NFAs

Example: Accepted Words

Example

q0 q1 q2 q3
ε

ε

0

0,1

0

accepts:
0

10010100

01000

does not accept:
ε
1001010

010001
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B1. Finite Automata NFAs

Exercise (slido)

q0 q1 q2 q3
ε

ε

0

0,1

0

Does this NFA accept input 01010?
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B1. Finite Automata NFAs

NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet Σ.

The language recognized by M is defined as
L(M) = {w ∈ Σ∗ | w is accepted by M}.
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B1. Finite Automata NFAs

Example: Recognized Language

Example

q0 q1 q2 q3
ε

ε

0

0,1

0

The NFA recognizes the language
{w ∈ {0, 1}∗ | w = 0 or w ends with 00}.
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B1. Finite Automata DFAs vs. NFAs

B1.5 DFAs vs. NFAs
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B1. Finite Automata DFAs vs. NFAs

DFAs are No More Powerful than NFAs

Observation
Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
δ(q, a) = q′ with δ(q, a) = {q′}.
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B1. Finite Automata DFAs vs. NFAs

Question

DFAs are
no more powerful than NFAs.

But are there languages
that can be recognized

by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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B1. Finite Automata DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let’s first have a look at
the idea by means of an example (on the blackboard).
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B1. Finite Automata DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let’s first have a look at
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B1. Finite Automata DFAs vs. NFAs

Conversion of an NFA to an Equivalent DFA: Example

q0 q1 q2 q3
ε

ε

0

0,1

0
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B1. Finite Automata DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA M = 〈Q,Σ, δ, q0,F 〉 we can construct
a DFA M ′ = 〈Q ′,Σ, δ′, q′0,F ′〉 with L(M) = L(M ′).
Here M ′ is defined as follows:

I Q ′ := P(Q) (the power set of Q)

I q′0 := E (q0)

I F ′ := {Q ⊆ Q | Q ∩ F 6= ∅}
I For all Q ∈ Q ′: δ′(Q, a) :=

⋃
q∈Q

⋃
q′∈δ(q,a) E (q′)

. . .
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B1. Finite Automata DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states p0, p1, . . . , pn with
iff p0 ∈ E (q0), pn ∈ F and

pi ∈
⋃

q∈δ(pi−1,ai )
E (q) for all i ∈ {1, . . . , n}

iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ F ′ and δ′(Qi−1, ai ) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)
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B1. Finite Automata DFAs vs. NFAs

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be accepted by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that accepts Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.
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B1. Finite Automata Summary

B1.6 Summary
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B1. Finite Automata Summary

Summary

I DFAs are automata where every state transition
is uniquely determined.

I NFAs can have zero, one or more transitions
for a given state and input symbol.

I NFAs can have ε-transitions that can be taken without
reading a symbol from the input.

I NFAs accept a word if there is at least one
accepting sequence of states.

I DFAs and NFAs accept the same languages.
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