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What is a Proof?

A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

What is a statement?
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Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions
and a set of conclusions.

The statement is true if the conclusions are true
whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung,
Folgerung/Konklusion, wahr

Notes:

set of preconditions is sometimes empty

often, “assumptions” is used instead of “preconditions”;
slightly unfortunate because “assumption”
is also used with another meaning ( cf. indirect proofs)
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Examples of Mathematical Statements

Examples (some true, some false):

“Let p ∈ N0 be a prime number. Then p is odd.”

“There exists an even prime number.”

“Let p ∈ N0 with p ≥ 3 be a prime number. Then p is odd.”

“All prime numbers p ≥ 3 are odd.”

“For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )”

“The equation ak + bk = ck has infinitely many solutions
with a, b, c, k ∈ N1 and k ≥ 2.”

“The equation ak + bk = ck has no solutions
with a, b, c, k ∈ N1 and k ≥ 3.”

What are the preconditions, what are the conclusions?
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On what Statements can we Build the Proof?

A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

We can use:

axioms: statements that are assumed to always be true
in the current context

theorems and lemmas: statements that were already proven

lemma: an intermediate tool
theorem: itself a relevant result

premises: assumptions we make
to see what consequences they have
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What is a Logical Step?

A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

Each step directly follows

from the axioms,

premises,

previously proven statements and

the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.



Introduction Direct Proof Indirect Proof Contrapositive Mathematical Induction Structural Induction Summary

What is a Logical Step?

A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

Each step directly follows

from the axioms,

premises,

previously proven statements and

the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.



Introduction Direct Proof Indirect Proof Contrapositive Mathematical Induction Structural Induction Summary

The Role of Definitions

Definition

A set is an unordered collection of distinct objects.
The set that does not contain any objects is the empty set ∅.

A definition introduces an abbreviation.

Whenever we say “set”, we could instead say “an unordered
collection of distinct objects” and vice versa.

Definitions can also introduce notation.
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Disproofs

A disproof (refutation) shows that a given mathematical
statement is false by giving an example
where the preconditions are true, but the conclusion is false.

This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

German: Widerlegung

Formally, disproofs are proofs of modified
(“negated”) statements.

Be careful about how to negate a statement!
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Proof Strategies

typical proof/disproof strategies:

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”

To prove, assume you are given an arbitrary x ∈ S
that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.
To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.
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Proof Strategies

typical proof/disproof strategies:
2 “A is a subset of B.”

To prove, assume you have an arbitrary element x ∈ A
and prove that x ∈ B.
To disprove, find an element in x ∈ A \ B
and prove that x ∈ A \ B.
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Proof Strategies

typical proof/disproof strategies:

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)

To prove, separately prove “if P then Q” and “if Q then P”.
To disprove, disprove “if P then Q” or disprove “if Q then P”.

German: “iff” = gdw. (“genau dann, wenn”)
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Proof Strategies

typical proof/disproof strategies:
4 “A = B”, where A and B are sets.

To prove, separately prove “A ⊆ B” and “B ⊆ A”.
To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.
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Proof Techniques

most common proof techniques:

direct proof

indirect proof (proof by contradiction)

proof by contrapositive

mathematical induction

structural induction

German: direkter Beweis, indirekter Beweis
(Beweis durch Widerspruch), Kontraposition,
vollständige Induktion, strukturelle Induktion
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Exercise

Negate the following statement:

If the sun is shining then all kids eat ice cream.
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Direct Proof
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Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

We first show that x ∈ A ∩ (B ∪ C ) implies
x ∈ (A ∩ B) ∪ (A ∩ C ) (⊆ part):

Let x ∈ A ∩ (B ∪ C ). Then by the definition of ∩ it holds that
x ∈ A and x ∈ B ∪ C .

We make a case distinction between x ∈ B and x /∈ B:

If x ∈ B then, because x ∈ A is true, x ∈ A ∩ B must be true.

Otherwise, because x ∈ B ∪ C we know that x ∈ C and thus with
x ∈ A, that x ∈ A ∩ C .

In both cases x ∈ A ∩ B or x ∈ A ∩ C ,
and we conclude x ∈ (A ∩ B) ∪ (A ∩ C ).

. . .
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof (continued).

We have shown that every element of A ∩ (B ∪ C )
is an element of (A ∩ B) ∪ (A ∩ C ) and vice versa.
Thus, both sets are equal.
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

Alternative:

A ∩ (B ∪ C ) = {x | x ∈ A and x ∈ B ∪ C}
= {x | x ∈ A and (x ∈ B or x ∈ C )}
= {x | (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C )}
= {x | x ∈ A ∩ B or x ∈ A ∩ C}
= (A ∩ B) ∪ (A ∩ C )
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Questions

Questions?
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Indirect Proof
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Indirect Proof

Indirect Proof (Proof by Contradiction)

Make an assumption that the statement is false.

Derive a contradiction from the assumption
together with the preconditions of the statement.

This shows that the assumption must be false
given the preconditions of the statement,
and hence the original statement must be true.

German: Annahme, Widerspruch
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Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let P = {p1, . . . , pn} be the set of all prime numbers.

Define m = p1 · . . . · pn + 1.

Since m ≥ 2, it must have a prime factor.
Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder
by any of the numbers in P. Hence p is no factor of m.

 Contradiction
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Questions

Questions?
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Contrapositive
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Proof by Contrapositive

Proof by Contrapositive

Prove “If A, then B” by proving “If not B, then not A.”

German: (Beweis durch) Kontraposition

Examples:

Prove “For all n ∈ N0: if n2 is odd, then n is odd”
by proving “For all n ∈ N0, if n is even, then n2 is even.”

Prove “For all n ∈ N0: if n is not a square number,
then

√
n is irrational” by proving “For all n ∈ N0:

if
√
n is rational, then n is a square number.”
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Exercise

How would you prove the following statement
by contrapositive:

If the sun is shining then all kids eat ice cream.
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Mathematical Induction
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Mathematical Induction

Mathematical Induction

Proof of a statement for all natural numbers n with n ≥ m

basis: proof of the statement for n = m

induction hypothesis (IH):
suppose that the statement is true for all k with m ≤ k ≤ n

inductive step: proof of the statement for n + 1
using the induction hypothesis

German: vollständige Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt
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Mathematical Induction: Example

Theorem

For all n ∈ N0 with n ≥ 1:
∑n

k=1(2k − 1) = n2

Proof.

Mathematical induction over n:

basis n = 1:
∑1

k=1(2k − 1) = 2− 1 = 1 = 12

IH:
∑m

k=1(2k − 1) = m2 for all 1 ≤ m ≤ n

inductive step n→ n + 1:∑n+1

k=1
(2k − 1) =

(∑n

k=1
(2k − 1)

)
+ 2(n + 1)− 1

IH
= n2 + 2(n + 1)− 1

= n2 + 2n + 1 = (n + 1)2
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Structural Induction
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

� is a binary tree (a leaf)

If L and R are binary trees, then 〈L,©,R〉 is a binary tree
(with inner node ©).

German: Binärbaum, Blatt, innerer Knoten

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules
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Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

� is a binary tree (a leaf)

If L and R are binary trees, then 〈L,©,R〉 is a binary tree
(with inner node ©).

German: Binärbaum, Blatt, innerer Knoten

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules
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� is a binary tree (a leaf)
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Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules
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Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

basic elements that are contained in M

construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

German: induktive Definition, Basiselemente, Konstruktionsregeln
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Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

basis: proof of the statement for the basic elements

induction hypothesis (IH):
suppose that the statement is true for some elements M

inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: strukturelle Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt
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Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(�) = 1

leaves(〈L,©,R〉) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(�) = 0

inner(〈L,©,R〉) = inner(L) + inner(R) + 1
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Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(�) = 0 = 1− 1 = leaves(�)− 1

 statement is true for base case . . .
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Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(�) = 0 = 1− 1 = leaves(�)− 1

 statement is true for base case . . .
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Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree 〈L,©,R〉,
we may use that it is true for the subtrees L and R.

inductive step for B = 〈L,©,R〉:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1
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Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree 〈L,©,R〉,
we may use that it is true for the subtrees L and R.

inductive step for B = 〈L,©,R〉:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1
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Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B),
is defined as follows:

height(�) = 0

height(〈L,©,R〉) = max{height(L), height(R)}+ 1

Prove by structural induction:

Theorem

For all binary trees B: leaves(B) ≤ 2height(B).
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Questions

Questions?
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Summary
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Summary

A proof is based on axioms and previously proven statements.

Individual proof steps must be obvious derivations.

direct proof: sequence of derivations or rewriting

indirect proof: refute the negated statement

contrapositive: prove “A⇒ B” as “not B ⇒ not A”

mathematical induction: prove statement for a starting point
and show that it always carries over to the next number

structural induction: generalization of mathematical induction
to arbitrary recursive structures
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