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What is a Proof?

A mathematical proof is
m a sequence of logical steps
m starting with one set of statements

m that comes to the conlusion
that some statement must be true.
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What is a Proof?

A mathematical proof is
m a sequence of logical steps
m starting with one set of statements

m that comes to the conlusion
that some statement must be true.

What is a statement?
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Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions
and a set of conclusions.

The statement is true if the conclusions are true
whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung,
Folgerung/Konklusion, wahr
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Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions
and a set of conclusions.

The statement is true if the conclusions are true
whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung,
Folgerung/Konklusion, wahr

Notes:
m set of preconditions is sometimes empty

m often, “assumptions” is used instead of “preconditions”;
slightly unfortunate because “assumption”
is also used with another meaning (~ cf. indirect proofs)
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Examples of Mathematical Statements

Examples (some true, some false):
m “Let p € Ny be a prime number. Then p is odd.”
“There exists an even prime number.”
“Let p € Ng with p > 3 be a prime number. Then p is odd.”
“All prime numbers p > 3 are odd.”
“For all sets A, B, C: AnN(BUC)=(ANB)U(ANC)"

“The equation a¥ + b¥ = c¥ has infinitely many solutions
with a,b,c, k € N7 and k > 2."

m “The equation a¥ + b¥ = c* has no solutions
with a, b,c, k € Ny and kK > 3.

What are the preconditions, what are the conclusions?
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On what Statements can we Build the Proof?

A mathematical proof is
m a sequence of logical steps
m starting with one set of statements

m that comes to the conlusion
that some statement must be true.

We can use:
m axioms: statements that are assumed to always be true
in the current context
m theorems and lemmas: statements that were already proven
® lemma: an intermediate tool
m theorem: itself a relevant result
B premises: assumptions we make
to see what consequences they have
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What is a Logical Step?
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A mathematical proof is
m a sequence of logical steps
m starting with one set of statements

m that comes to the conlusion
that some statement must be true.

Each step directly follows
m from the axioms,
B premises,
m previously proven statements and
m the preconditions of the statement we want to prove.
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What is a Logical Step?
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A mathematical proof is
m a sequence of logical steps
m starting with one set of statements

m that comes to the conlusion
that some statement must be true.

Each step directly follows
m from the axioms,
B premises,
m previously proven statements and
m the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.
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The Role of Definitions

Definition

A set is an unordered collection of distinct objects.
The set that does not contain any objects is the empty set ().
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The Role of Definitions

Definition

A set is an unordered collection of distinct objects.
The set that does not contain any objects is the empty set ().

m A definition introduces an abbreviation.

m Whenever we say “set”, we could instead say “an unordered
collection of distinct objects” and vice versa.

m Definitions can also introduce notation.
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Disproofs

m A disproof (refutation) shows that a given mathematical
statement is false by giving an example
where the preconditions are true, but the conclusion is false.

m This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

German: Widerlegung

m Formally, disproofs are proofs of modified
(“negated” ) statements.

m Be careful about how to negate a statement!
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Proof Strategies

typical proof/disproof strategies:
@ “All x € S with the property P also have the property Q.”
“For all x € §: if x has property P, then x has property Q."

m To prove, assume you are given an arbitrary x € S
that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.

m To disprove, find a counterexample, i.e., find an x € S
that has property P but not @ and prove this.
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Proof Strategies

typical proof/disproof strategies:
@ "Ais a subset of B."

m To prove, assume you have an arbitrary element x € A
and prove that x € B.

m To disprove, find an element in x € A\ B
and prove that x € A\ B.
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Proof Strategies

typical proof/disproof strategies:
© "For all x € S: x has property P iff x has property Q."
(“iff": “if and only if")

m To prove, separately prove “if P then Q" and "“if Q then P".
m To disprove, disprove “if P then Q" or disprove “if Q then P".

German: "“iff" = gdw. (“genau dann, wenn")
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Proof Strategies

typical proof/disproof strategies:
Q@ "A=B", where A and B are sets.

m To prove, separately prove “"A C B" and “B C A".
m To disprove, disprove “A C B" or disprove "B C A".
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Proof Techniques

most common proof techniques:
m direct proof
m indirect proof (proof by contradiction)
m proof by contrapositive
m mathematical induction
m structural induction
German: direkter Beweis, indirekter Beweis

(Beweis durch Widerspruch), Kontraposition,
vollstandige Induktion, strukturelle Induktion



Introduction
00000000000

Exercise

Negate the following statement:

If the sun is shining then all kids eat ice cream.
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Direct Proof

Direct Proof
Direct derivation of the statement by deducing or rewriting.
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof.

We first show that x € AN (B U C) implies
x€(ANB)U(ANC) (C part):
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof.
We first show that x € AN (B U C) implies
x€(ANB)U(ANC) (C part):

Let x € AN (B U C). Then by the definition of N it holds that
x€Aand xe BUC.
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof.

We first show that x € AN (B U C) implies
x€(ANB)U(ANC) (C part):

Let x € AN (B U C). Then by the definition of N it holds that
x€Aand xe BUC.

We make a case distinction between x € B and x ¢ B:

If x € B then, because x € A is true, x € AN B must be true.
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof.

We first show that x € AN (B U C) implies
x€(ANB)U(ANC) (C part):

Let x € AN (B U C). Then by the definition of N it holds that
x€Aand xe BUC.

We make a case distinction between x € B and x ¢ B:

If x € B then, because x € A is true, x € AN B must be true.

Otherwise, because x € BU C we know that x € C and thus with
x €A that xe AnC.
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof.

We first show that x € AN (B U C) implies
x€(ANB)U(ANC) (C part):

Let x € AN (B U C). Then by the definition of N it holds that
x€Aand xe BUC.

We make a case distinction between x € B and x ¢ B:

If x € B then, because x € A is true, x € AN B must be true.

Otherwise, because x € BU C we know that x € C and thus with
x €A that xe AnC.

In both cases x e ANBorxe ANC,
and we conclude x € (AN B) U (AN C).
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof (continued).

O part: we must show that x € (AN B) U (AN C) implies
xeAn(BU Q).

Let x € (AN B) U (AN C).
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Direct Proof: Example

Theorem (distributivity)
For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof (continued).

O part: we must show that x € (AN B) U (AN C) implies
x€eAN(BUC).

Let xe (ANB)U(ANC).

We make a case distinction between x € AN B and x ¢ AN B:

If xe AN B then x € Aand x € B.
The latter implies x € BU C and hence x € AN (B U C).
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof (continued).

O part: we must show that x € (AN B) U (AN C) implies
x€eAN(BUC).

Let xe (ANB)U(ANC).

We make a case distinction between x € AN B and x ¢ AN B:

If xe AN B then x € Aand x € B.

The latter implies x € BU C and hence x € AN (B U C).

If x¢ AN B we know x € AN C dueto x € (ANB)U (AN C).
This (analogously) implies x € A and x € C, and hence x € BU C
and thus x € AN (BU C).
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof (continued).

O part: we must show that x € (AN B) U (AN C) implies
x€eAN(BUC).

Let xe (ANB)U(ANC).

We make a case distinction between x € AN B and x ¢ AN B:

If xe AN B then x € Aand x € B.
The latter implies x € BU C and hence x € AN (B U C).

If x¢ AN B we know x € AN C dueto x € (ANB)U (AN C).
This (analogously) implies x € A and x € C, and hence x € BU C
and thus x € AN (BU C).

In both cases we conclude x € AN (BU C).
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof (continued).

We have shown that every element of AN (B U C)
is an element of (AN B) U (AN C) and vice versa.
Thus, both sets are equal. [
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: AnN(BUC)=(ANB)U(AN C).

Proof.
Alternative:

AN(BUC)={x|x€eAand xe BUC}
={x|x€Aand (xeBorxe ()}
={x|(x€eAand xe B)or (xe Aand x € ()}
={x|x€eAnBorxe ANC}
=(ANB)U(ANC)
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Indirect Proof

Indirect Proof (Proof by Contradiction)
m Make an assumption that the statement is false.

m Derive a contradiction from the assumption
together with the preconditions of the statement.

m This shows that the assumption must be false
given the preconditions of the statement,
and hence the original statement must be true.

German: Annahme, Widerspruch
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Indirect Proof: Example

There are infinitely many prime numbers. I
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Indirect Proof: Example

There are infinitely many prime numbers.

Assumption: There are only finitely many prime numbers.
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Indirect Proof: Example

There are infinitely many prime numbers. I

Proof.
Assumption: There are only finitely many prime numbers.

Let P ={p1,...,pn} be the set of all prime numbers.
Define m=py-... - pp+ 1.
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Indirect Proof: Example

There are infinitely many prime numbers. I

Proof.
Assumption: There are only finitely many prime numbers.

Let P ={p1,...,pn} be the set of all prime numbers.
Define m=py-... - pp+ 1.

Since m > 2, it must have a prime factor.
Let p be such a prime factor.
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Indirect Proof: Example

There are infinitely many prime numbers. I

Proof.
Assumption: There are only finitely many prime numbers.

Let P ={p1,...,pn} be the set of all prime numbers.
Define m=py-... - pp+ 1.

Since m > 2, it must have a prime factor.
Let p be such a prime factor.

Since p is a prime number, p has to be in P.
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Indirect Proof: Example

There are infinitely many prime numbers. I

Proof.
Assumption: There are only finitely many prime numbers.

Let P ={p1,...,pn} be the set of all prime numbers.
Define m=py-... - pp+ 1.

Since m > 2, it must have a prime factor.
Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder
by any of the numbers in P. Hence p is no factor of m.

~~ Contradiction ]
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Proof by Contrapositive

Proof by Contrapositive
Prove “If A, then B” by proving “If not B, then not A."

German: (Beweis durch) Kontraposition
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Proof by Contrapositive

Proof by Contrapositive
Prove “If A, then B” by proving “If not B, then not A."

German: (Beweis durch) Kontraposition

Examples:
m Prove “For all n € Ny: if n? is odd, then n is odd”
by proving “For all n € N, if n is even, then n? is even.”
m Prove "For all n € Ny: if n is not a square number,

then +/n is irrational” by proving “For all n € Np:
if \/n is rational, then n is a square number.”
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Exercise

How would you prove the following statement
by contrapositive:

If the sun is shining then all kids eat ice cream.
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Mathematical Induction
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Mathematical Induction

Mathematical Induction

Proof of a statement for all natural numbers n with n > m

m basis: proof of the statement for n = m

m induction hypothesis (IH):
suppose that the statement is true for all k with m < kK <n

m inductive step: proof of the statement for n + 1
using the induction hypothesis

German: vollstandige Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt
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Mathematical Induction: Example

For all n € Ng with n > 1: >°7_(2k — 1) = n?
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Mathematical Induction: Example

For all n € Ng with n > 1: >°7_(2k — 1) = n?

Mathematical induction over n:

basis n=1: 3, _;(2k—1)=2-1=1=12

A
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Mathematical Induction: Example

For all n € Ng with n > 1: >°7_(2k — 1) = n?

Proof.

Mathematical induction over n:

basis n=1: 3, _;(2k—1)=2-1=1=12
IH: Y P (2k—1)=m?forall L<m<n

| \

A
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| Induction

Mathematical Induction: Example

For all n € Ng with n > 1: >°7_(2k — 1) = n? \

Summary

Proof.
Mathematical induction over n:
basis n=1: 3, _;(2k—1)=2-1=1=12

IH: Y P (2k—1)=m?forall L<m<n
inductive step n — n+ 1:

Z::(zk_ 1) = (Z:Zl(2k— 1)) +2(n+1)—1
B2 4o(n+1) -1
=n+2n+1=(n+1)>
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Structural Induction
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set Ny of natural numbers is inductively defined as follows:
m 0 is a natural number.

m If nis a natural number, then n+ 1 is a natural number.
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set Ny of natural numbers is inductively defined as follows:
m 0 is a natural number.

m If nis a natural number, then n+ 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:
m O is a binary tree (a leaf)

m If L and R are binary trees, then (L, (O, R) is a binary tree
(with inner node Q).

German: Binarbaum, Blatt, innerer Knoten
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set Ny of natural numbers is inductively defined as follows:
m 0 is a natural number.

m If nis a natural number, then n+ 1 is a natural number.

Example (Binary Tree)
The set B of binary trees is inductively defined as follows:
m O is a binary tree (a leaf)

m If L and R are binary trees, then (L, (O, R) is a binary tree
(with inner node Q).

German: Binarbaum, Blatt, innerer Knoten

Implicit statement: all elements of the set can be constructed
by finite application of these rules
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Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

m basic elements that are contained in M

m construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

German: induktive Definition, Basiselemente, Konstruktionsregeln
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Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set
m basis: proof of the statement for the basic elements

m induction hypothesis (IH):
suppose that the statement is true for some elements M
m inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: strukturelle Induktion, Induktionsanfang,
Induktionsvoraussetzung, Induktionsschritt
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Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(CD) = 1
leaves((L, O, R)) = leaves(L) + leaves(R)

A

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(C0) = 0
inner((L, O, R)) = inner(L) + inner(R) + 1
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Structural Induction: Example (2)

For all binary trees B: inner(B) = leaves(B) — 1.
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Structural Induction: Example (2)

For all binary trees B: inner(B) = leaves(B) — 1.

induction basis:
inne(d) =0=1—1= leaves(dJ) — 1

~~ statement is true for base case
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Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree (L, O, R),
we may use that it is true for the subtrees L and R.
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Structural Induction: Example (3)

Proof (continued)

induction hypothesis:
to prove that the statement is true for a composite tree (L, O, R),

we may use that it is true for the subtrees L and R.
inductive step for B = (L, O, R):
inner(B) = inner(L) + inner(R) + 1

)
(leaves(L) 1) + (leaves(R) — 1) + 1
= leaves(L) + leaves(R) — 1 = leaves(B) — 1




Intre ) Direct Proof Indirect Proof  Contrapositive =~ Mathematical Induction  Structural Induction ~ Summar

000000080

Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B),
is defined as follows:

height(CJ) =0
height((L, O, R)) = max{height(L), height(R)} + 1

Prove by structural induction:

For all binary trees B: leaves(B) < 2height(B)
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Summary
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Summary

A proof is based on axioms and previously proven statements.
Individual proof steps must be obvious derivations.

direct proof: sequence of derivations or rewriting

indirect proof: refute the negated statement

contrapositive: prove “A = B" as “not B = not A”

mathematical induction: prove statement for a starting point
and show that it always carries over to the next number

m structural induction: generalization of mathematical induction
to arbitrary recursive structures
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