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Sets
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set: unordered collection of distinguishable objects;
each object contained at most once
notations:

> explicit, listing all elements, e.g. A= {1,2 3}

Sets, Tuples, Relations

» implicit, specifying a property characterizing all elements,

eg A={x|xeNand1<x <3}
» implicit, as a sequence with dots,
eg Z=4{..,-2,-10,1,2...}

e € M: eisin set M (an element of the set)
e ¢ M: eis not in set M
empty set ) = {}

cardinality |[M| of a finite set M: number of elements in M

German: Menge, Element, leere Menge, Machtigkeit/Kardinalitat
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Sets

> AC B: Ais a subset of B,
i.e., every element of A is an element of B

» A C B: Ais a strict subset of B,
i.,e., ACBand A#B.

» power set P(M): set of all subsets of M
e.g., P({a,b}) =
» Cardinality of power set of finite set S: |P(S)| =

German: Teilmenge, echte Teilmenge, Potenzmenge
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Set Operations

> intersection ANB={x|x € Aand x € B}

¢
y

» union AUB

{x|x€Aorxe B}

5
y

» difference A\ B ={x|x € Aand x ¢ B}

.
N

» complement A= B\ A, where A C B and
B is the set of all considered objects (in a given context)

:

German: Schnitt, Vereinigung, Differenz, Komplement
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Tuples
> k-tuple: ordered sequence of k objects
» written (o1,...,0k) or (o1,...,0k)
» unlike sets, order matters ((1,2) # (2,1))
P objects may occur multiple times in a tuple
> objects contained in tuples are called components
> terminology:
» k = 2: (ordered) pair
> k= 3: triple

Sets, Tuples, Relations

» more rarely: quadruple, quintuple, sextuple, septuple, ...

> if k is clear from context (or does not matter),
often just called tuple

German: k-Tupel, Komponente, Paar, Tripel
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Cartesian Product

> for sets My, My, ..., M, the Cartesian product

Mp x -+ x M, is the set

My x -+ x My={{o1,...,0n) | 01 € My,...,0, € Mp}.
» Example: My = {a, b, c}, My = {1,2},

My x My = {(a,1), (a,2), (b, 1), (b,2), (c, 1), (c,2)}
> special case: MK = M x --- x M (k times)

> example with M = {1,2}:
M? = {(1,1),(1,2),(2,1),(2,2)}

German: kartesisches Produkt
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Relations

P an n-ary relation R over the sets My,..., M,
is a subset of their Cartesian product: R C My x --- x M,.
> example with M = {1,2}:
R< C M2 as R = {(1,1),(1,2),(2,2)}
German: (n-stellige) Relation
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Exercise

Consider S = P({1,2}) x {a, b}.
@ Write down three different elements of S.
@ What is |S|?
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A2.2 Functions
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Functions
Definition (Total Function)
A (total) function f : D — C (with sets D, C)
maps every value of its domain D
to exactly one value of its codomain C.
German: (totale) Funktion, Definitionsbereich, Wertebereich
Example
» square : 7 — 7 with square(x) = x>
> add: N2 — Np with add(x,y) = x +y
> addg : R? — R with addg(x,y) = x+y
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Functions: Example

Example
Let Q - {q07 41, 92, Qaccept; Qreject} and [ = {O 17 D}

Define § : (Q \ {Gaccepts Greject }) X T — Q@ x I x {L,R} by

0

1
(90,0,R)  {qo,1,R)  (q1,0,L)
a1 <CI27 17 I—> <Cl1, 0, l—> <qrejecta 1; l—>
(g2,0,L 1,L
1

> <CI2, ) > <qaccept’|:|’ R>
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Exercises

Let V={X,Y,Z}, ¥ ={a,b,c} and Q = {q1, g2} be three sets.

@ Specify a non-trivial example for a partial
function § : Q@ x ¥ —, P(Q).

@ Specify a non-trivial example for a
relation P C (VU X)2 x V2.
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Partial Functions
Definition (Partial Function)
A partial function f : X —, Y maps every value in X
to at most one value in Y.
If f does not map x € X to any value in Y,
then f is undefined for x.
German: partielle Funktion
Example
f: Np x Ng —p Np with
X—y if y <x
f(x,y) = . .
undefined otherwise
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A2.3 Summary
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Summary

P sets: unordered, contain every element at most once

v

tuples: ordered, can contain the same object multiple times

» Cartesian product: My x --- x M, set of all n-tuples
where the /-th component is in M;

» function f : X — Y maps every value in X
to exactly one value in Y

» partial function g : X —p Y may be undefined
for some values in X
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