
Algorithmen und Datenstrukturen
C6. Kürzeste Pfade: Algorithmen

Gabriele Röger

Universität Basel

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 30

Algorithmen und Datenstrukturen
— C6. Kürzeste Pfade: Algorithmen

C6.1 Dijkstras Algorithmus

C6.2 Azyklische Graphen

C6.3 Bellman-Ford-Algorithmus

C6.4 Zusammenfassung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 30

C6. Kürzeste Pfade: Algorithmen Dijkstras Algorithmus

C6.1 Dijkstras Algorithmus

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 30

C6. Kürzeste Pfade: Algorithmen Dijkstras Algorithmus

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Grundlagen

Dijkstras
Algorithmus

Azyklische
Graphen

Algorithmus von
Bellman und Ford

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 30

C6. Kürzeste Pfade: Algorithmen Dijkstras Algorithmus

Dijkstras Algorithmus: High-Level-Perspektive

Algorithmus von Dijkstra (für nicht-negative Kantengewichte)

Baue Kürzeste-Pfade-Baum ausgehend von Startknoten s auf:

I Betrachte Knoten (die noch nicht im Baum sind) in
aufsteigender Reihenfolge ihres Abstandes von s.

I Nimm Knoten in Baum auf und relaxiere ausgehende Kanten.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 30

C6. Kürzeste Pfade: Algorithmen Dijkstras Algorithmus

Dijkstras Algorithmus: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 10

2 8

3 5

4 13

5 14

6 20

7 18

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 30

C6. Kürzeste Pfade: Algorithmen Dijkstras Algorithmus

Datenstrukturen

I edge to: knotenindiziertes Array, das an Stelle v
die letzte Kante des kürzesten bekannten Pfades enthält.

I distance: knotenindiziertes Array, das an Stelle v die Kosten
des kürzesten bekannten Pfades vom Startknoten zu v enthält.

I pq: indizierte Priority-Queue von Knoten
I Knoten noch nicht im Baum
I Bereits ein Pfad zu dem Knoten bekannt
I Sortiert nach Kosten des kürzesten bekannten Pfades

zu dem Knoten.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 30

C6. Kürzeste Pfade: Algorithmen Dijkstras Algorithmus

Dijkstras Algorithmus

1 class DijkstraSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self.distance = [float('inf')] * graph.no_nodes()

5 pq = IndexMinPQ()

6 self.distance[start_node] = 0

7 pq.insert(start_node, 0)

8 while not pq.empty():

9 self.relax(graph, pq.del_min(), pq)

10

11 def relax(self, graph, v, pq):

12 for edge in graph.adjacent_edges(v):

13 w = edge.to_node()

14 if self.distance[v] + edge.weight() < self.distance[w]:

15 self.edge_to[w] = edge

16 self.distance[w] = self.distance[v] + edge.weight()

17 if pq.contains(w):

18 pq.change(w, self.distance[w])

19 else:

20 pq.insert(w, self.distance[w])

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 30

C6. Kürzeste Pfade: Algorithmen Dijkstras Algorithmus

Korrektheit

Theorem
Dijkstras Algorithmus löst das Single-Source-Shortest-Paths-
Problem in Digraphen mit nicht-negativen Gewichten.

Beweis.
I Ist v von Startknoten erreichbar, wird jede ausgehende Kante

e = (v ,w) genau einmal relaxiert (wenn v relaxiert wird).

I Dann gilt distance[w] ≤ distance[v] + weight(e).
I Ungleichung bleibt erfüllt:

I distance[v] wird nicht mehr verändert, da Wert minimal war
und es keine negativen Kantengewichte gibt.

I distance[w] wird höchstens kleiner.

I Sind alle erreichbaren Knoten relaxiert, ist
Optimalitätsbedingung erfüllt.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 30

C6. Kürzeste Pfade: Algorithmen Dijkstras Algorithmus

Vergleich zu Eager Prim-Algorithmus

Dijkstras Algorithmus sehr ähnlich zu Eager Prim-Algorithmus für
minimale Spannbäume

I Beide bauen sukzessive einen Baum auf

I nächster Knoten Prim: minimale Distanz zu bisherigem Baum.

I nächster Knoten Dijkstra: minimale Distanz vom Startknoten.

I included nodes von Prim bei Dijkstra nicht notwendig,
da bei bereits erledigten Knoten die if-Bedingung
in Zeile 14 immer falsch ist.

Laufzeit O(|E | log |V |) und Platzbedarf O(|V |) direkt übertragbar.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 30

C6. Kürzeste Pfade: Algorithmen Azyklische Graphen

C6.2 Azyklische Graphen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 30

C6. Kürzeste Pfade: Algorithmen Azyklische Graphen

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Grundlagen

Dijkstras
Algorithmus

Azyklische
Graphen

Algorithmus von
Bellman und Ford

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 30

C6. Kürzeste Pfade: Algorithmen Azyklische Graphen

Zykelfreiheit ausnutzen

Gegeben: Azyklischer, gewichteter Digraph

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

Können wir die Zykelfreiheit beim Finden kürzester Pfade nutzen?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 30

C6. Kürzeste Pfade: Algorithmen Azyklische Graphen

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
Idee: z.B. 0, 1, 3, 4, 2, 5, 7, 6

0

1

2

3

4

5

6

7

18

8

5

3

5

13

-2

1

6

12

5

6
-1

12

16

4

distance

0 0

1 18

2 3

3 5

4 21

5 9

6 12

7 13

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 30

C6. Kürzeste Pfade: Algorithmen Azyklische Graphen

Theorem

Theorem
Durch Relaxieren der Knoten in topologischer Reihenfolge wird das
Single-Source-Shortest-Paths-Problem für kantengewichtete,
azyklische Digraphen in Zeit O(|E |+ |V |) gelöst.

Beweis.
I Jede Kante e = (v ,w) wird genau einmal relaxiert. Direkt

danach gilt distance[w] ≤ distance[v] + weight(e).
I Ungleichung gilt bis zur Terminierung

I distance[w] wird nie grösser.
I distance[v] wird nicht mehr verändert, da

alle eingehenden Kanten aufgrund der
topologischen Sortierung bereits relaxiert wurden.

→ Optimalitätskriterium ist bei Terminierung erfüllt.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 30

C6. Kürzeste Pfade: Algorithmen Azyklische Graphen

Verwandte Probleme: Längste Pfade

Definition (Längste Pfade in azylischen Graphen)

Gegeben: Kantengewichteter, azyklischer Digraph, Startknoten s
Gefragt: Gibt es einen Pfad von s zu Knoten v?

Falls ja, finde den Pfad mit maximalem Gewicht.

Multipliziere alle Kantengewichte mit −1 und verwende
Kürzeste-Pfade-Algorithmus.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 30

C6. Kürzeste Pfade: Algorithmen Azyklische Graphen

Verwandte Probleme: Kritischer Pfad

Gegeben:

I Menge von Aufgaben a, jede benötigt gegebene Zeit ta
I Bedingungen a→ a′, dass a fertiggestellt sein muss, bevor a′

begonnen werden kann (in lösbaren Problemen zykelfrei).

Frage:

I Annahme: Beliebig viele Aufgaben parallel ausführbar

I Wie lange benötigen Sie für die Erledigung aller Aufgaben?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 30

C6. Kürzeste Pfade: Algorithmen Azyklische Graphen

Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen

I Knoten s, e + für jede Aufgabe a zwei Knoten as und ae
I für alle a:

I Kante (s, as) mit Gewicht 0
I Kante (ae, e) mit Gewicht 0
I Kante (as, ae) mit Gewicht ta

I für jede Bedingung a→ a′ Kante (ae, a
′
s) mit Gewicht 0

Kritischer Pfad für Aufgabe a ist längster Pfad von s zu as.
Wähle Startzeit für a als Gewicht eines kritischen Pfades.
→ Ergibt optimale Gesamtausführungszeit

(= Gewicht von längstem Pfad von s zu e)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

C6.3 Bellman-Ford-Algorithmus

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Grundlagen

Dijkstras
Algorithmus

Azyklische
Graphen

Algorithmus von
Bellman und Ford

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Problem

I Bei negativen Kantengewichten kann es negative Zyklen
geben, d.h. Zyklen, bei denen die Summe der Kantengewichte
negativ ist.

I Liegt ein Knoten eines solchen Zyklus auf einem Pfad von s
nach v , können wir Pfade finden, deren Gewicht niedriger als
jeder gegebene Wert ist.
→ kein korrekt gestelltes Problem

I Alternative Fragestellung: Finde kürzesten einfachen Pfad?
→ NP-schweres (= sehr schwieriges) Problem

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Fragestellung

In vielen praktischen Anwendungen sind negative Zyklen ein
Hinweis auf einen Modellierungsfehler.

Neue Fragestellung

Gegeben: Gewichteter Digraph, Startknoten s

Gefragt: Ist von s aus ein negativer Zyklus erreichbar?
Falls nein, berechne den Kürzeste-Pfade-Baum
zu allen erreichbaren Knoten.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus: High-Level-Perspektive

In Graphen ohne negative Zyklen (aber mit negativen Gewichten):

Bellman-Ford-Algorithmus
I Initialisiere distance[s] = 0 für Startknoten s,

distance[n] =∞ für alle anderen Knoten.

I Dann |V | Durchläufe, in denen
jeweils alle Kanten relaxiert werden.

Proposition

Das Verfahren löst das Single-Source-Shortest-Paths-Problem für
Graphen ohne negative Zyklen in Zeit O(|E ||V |) und mit
zusätzlichem Speicher O(|V |).

Beweisidee: Nach i Durchgängen ist jeder Pfad zu v mindestens so
kurz wie jeder Pfad zu v mit höchstens i Kanten.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Effizientere Variante

I Ändert sich distance[v] in Durchgang i nicht, ändert auch
keine Relaxierung einer von v ausgehenden Kante in
Durchgang i + 1 etwas.

I Idee: Merke dir Knoten mit veränderter distance in Queue.

I In der Praxis deutlich schneller, auch wenn sich das
Worst-Case-Verhalten nicht verbessert.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Was ist mit negativen Zyklen?

I Ist von s aus kein negativer Zyklus erreichbar, wird im |V |-ten
Durchgang keine Knotendistanz mehr geupdated.

I Gibt es einen negativen Zyklus, führt dies zu einem Zyklus
mit den in edge to gespeicherten Kanten.

I In der Praxis testen wir das nach jedem Durchlauf.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 25 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus

1 class BellmanFordSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self.distance = [float('inf')] * graph.no_nodes()

5 self.in_queue = [False] * graph.no_nodes()

6 self.queue = deque()

7 self.calls_to_relax = 0

8 self.cycle = None

9

10 self.distance[start_node] = 0

11 self.queue.append(start_node)

12 self.in_queue[start_node] = True

13 while (not self.has_negative_cycle() and

14 self.queue): # queue not empty

15 node = self.queue.popleft()

16 self.in_queue[node] = False

17 self.relax(graph, node)

18

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus (Fortsetzung)

19 def relax(self, graph, v):

20 for edge in graph.adjacent_edges(v):

21 w = edge.to_node()

22 if self.distance[v] + edge.weight() < self.distance[w]:

23 self.edge_to[w] = edge

24 self.distance[w] = self.distance[v] + edge.weight()

25 if not self.in_queue[w]:

26 self.queue.append(w)

27 self.in_queue[w] = True

28 self.calls_to_relax += 1

29 if self.calls_to_relax % graph.no_nodes() == 0:

30 self.find_negative_cycle()

31

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27 / 30

C6. Kürzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus (Fortsetzung)

32 def has_negative_cycle(self):

33 return self.cycle is not None

34

35 def find_negative_cycle(self):

36 no_nodes = len(self.distance)

37 graph = EdgeWeightedDigraph(no_nodes)

38 for edge in self.edge_to:

39 if edge is not None:

40 graph.add_edge(edge)

41

42 cycle_finder = WeightedDirectedCycle(graph)

43 self.cycle = cycle_finder.get_cycle()

WeightedDirectedCycle detektiert gerichtete Zykel in
gewichteten Graphen.
→ Folge von Tiefensuchen wie in DirectedCycle (C2)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28 / 30

C6. Kürzeste Pfade: Algorithmen Zusammenfassung

C6.4 Zusammenfassung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 29 / 30

C6. Kürzeste Pfade: Algorithmen Zusammenfassung

Zusammenfassung

I Nicht-negative Gewichte
I Sehr häufiges Problem
I Dijkstras Algorithmus mit Laufzeit O(|E | log |V |)

I Azyklische Graphen
I Kommt in manchen Anwendungen vor und sollte ausgenutzt

werden.
I Mit topologischer Sortierung in linearer Zeit O(|E |+ |V |)

I Negative Gewichte oder negative Zykel
I Gibt es keinen negativen Zyklus findet der

Bellman-Ford-Algorithmus kürzeste Pfade.
I Sonst findet er einen negativen Zyklus.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 30 / 30

	Dijkstras Algorithmus
	

	Azyklische Graphen
	

	Bellman-Ford-Algorithmus
	

	Zusammenfassung
	

