Algorithmen und Datenstrukturen
C6. Kiirzeste Pfade: Algorithmen

Gabriele Roger

Universitat Basel

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 1/ 30

Algorithmen und Datenstrukturen
— C6. Kiirzeste Pfade: Algorithmen

C6.1 Dijkstras Algorithmus
C6.2 Azyklische Graphen
C6.3 Bellman-Ford-Algorithmus

C6.4 Zusammenfassung

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

2/30

C6. Kiirzeste Pfade: Algorithmen Dijkstras Algorithmus

C6.1 Dijkstras Algorithmus

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 3 /30

C6. Kiirzeste Pfade: Algorithmen

Graphen: Ubersicht

Reprasentation

Exploration

Exploration:

Anwendungen

Minimale

Grundlagen

Andere

_ = -

Azyklische
Graphen

| Graphenprobleme

|| Algorithmus von
Bellman und Ford

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Dijkstras Algorithmus

4/ 30

C6. Kiirzeste Pfade: Algorithmen

Dijkstras Algorithmus: High-Level-Perspektive

Algorithmus von Dijkstra (fiir nicht-negative Kantengewichte)
Baue Kiirzeste-Pfade-Baum ausgehend von Startknoten s auf:

» Betrachte Knoten (die noch nicht im Baum sind) in
aufsteigender Reihenfolge ihres Abstandes von s.

» Nimm Knoten in Baum auf und relaxiere ausgehende Kanten.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

Dijkstras Algorithmus

/ 30

C6. Kiirzeste Pfade: Algorithmen

Dijkstras Algorithmus: lllustration

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

N o A W N = O

distance

[y

0
10
8
5
13
4
20
18

Dijkstras Algorithmus

C6. Kiirzeste Pfade: Algorithmen

Datenstrukturen

> edge_to: knotenindiziertes Array, das an Stelle v
die letzte Kante des kiirzesten bekannten Pfades enthilt.

> distance: knotenindiziertes Array, das an Stelle v die Kosten
des kiirzesten bekannten Pfades vom Startknoten zu v enthilt.
» pq: indizierte Priority-Queue von Knoten

» Knoten noch nicht im Baum

» Bereits ein Pfad zu dem Knoten bekannt

» Sortiert nach Kosten des kiirzesten bekannten Pfades
zu dem Knoten.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

Dijkstras Algorithmus

/ 30

C6. Kiirzeste Pfade: Algorithmen

Dijkstras Algorithmus

Dijkstras Algorithmus

1 class DijkstraSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self .distance = [float('inf')] * graph.no_nodes()

5 pq = IndexMinPQQ)

6 self .distance[start_node] = 0

7 pq.insert(start_node, 0)

8 while not pq.empty():

9 self .relax(graph, pq.del_min(), pq)

10

11 def relax(self, graph, v, pq):

12 for edge in graph.adjacent_edges(v):

13 w = edge.to_node()

14 if self.distance[v] + edge.weight() < self.distancel[w]:
15 self.edge_to[w] = edge

16 self.distance[w] = self.distance[v] + edge.weight()
17 if pq.contains(w):

18 pq.change(w, self.distancel[w])

19 else:

20 pq-insert(w, self.distancel[w])

G. Réger (Universitat Basel)

Algorithmen und Datenstrukturen 8

/ 30

C6. Kiirzeste Pfade: Algorithmen

Korrektheit

Dijkstras Algorithmus

Theorem
Dijkstras Algorithmus Iést das Single-Source-Shortest-Paths-
Problem in Digraphen mit nicht-negativen Gewichten.

Beweis.
> Ist v von Startknoten erreichbar, wird jede ausgehende Kante
e = (v, w) genau einmal relaxiert (wenn v relaxiert wird).
» Dann gilt distance|w| < distance[v] + weight(e).
> Ungleichung bleibt erfiillt:
» distance[v] wird nicht mehr verdndert, da Wert minimal war
und es keine negativen Kantengewichte gibt.
» distance[w] wird hdchstens kleiner.
» Sind alle erreichbaren Knoten relaxiert, ist
Optimalitatsbedingung erfiillt.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9 /30

C6. Kiirzeste Pfade: Algorithmen

Vergleich zu Eager Prim-Algorithmus

Dijkstras Algorithmus sehr dhnlich zu Eager Prim-Algorithmus fiir
minimale Spannbdume

» Beide bauen sukzessive einen Baum auf

nachster Knoten Prim: minimale Distanz zu bisherigem Baum.

>
» nichster Knoten Dijkstra: minimale Distanz vom Startknoten.
>

included nodes von Prim bei Dijkstra nicht notwendig,
da bei bereits erledigten Knoten die if-Bedingung
in Zeile 14 immer falsch ist.

Laufzeit O(|E|log V) und Platzbedarf O(|V/|) direkt iibertragbar.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

Dijkstras Algorithmus

10 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

C6.2 Azyklische Graphen

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11 / 30

C6. Kiirzeste Pfade: Algorithmen

Graphen: Ubersicht

— Reprasentation
— Exploration
|| Exploration:
Anwendungen
T |
Minimale
Spannbdume Dijkstras
Algorithmus

Andere -

| Graphenprobleme

|| Algorithmus von
Bellman und Ford

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Azyklische Graphen

12 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Zykelfreiheit ausnutzen

Gegeben: Azyklischer, gewichteter Digraph

Konnen wir die Zykelfreiheit beim Finden kiirzester Pfade nutzen?

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
zB.0,1,3,4,25/7,6

distance

~N O B W NN = O
== N =
HEEEEBRER

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 14 / 30

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 13 / 30
C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen
Theorem
Theorem

Durch Relaxieren der Knoten in topologischer Reihenfolge wird das
Single-Source-Shortest-Paths-Problem fiir kantengewichtete,
azyklische Digraphen in Zeit O(|E| + |V/|) gelést.

Beweis.
» Jede Kante e = (v, w) wird genau einmal relaxiert. Direkt
danach gilt distance[w]| < distance[v]| + weight(e).
» Ungleichung gilt bis zur Terminierung

> distance[w] wird nie grosser.

> distance[v] wird nicht mehr veridndert, da
alle eingehenden Kanten aufgrund der
topologischen Sortierung bereits relaxiert wurden.

— Optimalitatskriterium ist bei Terminierung erfiillt. O

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 15 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Verwandte Probleme: Langste Pfade

Definition (Langste Pfade in azylischen Graphen)

Gegeben: Kantengewichteter, azyklischer Digraph, Startknoten s
Gefragt: Gibt es einen Pfad von s zu Knoten v?
Falls ja, finde den Pfad mit maximalem Gewicht.

Multipliziere alle Kantengewichte mit —1 und verwende
Kiirzeste-Pfade-Algorithmus.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Verwandte Probleme: Kritischer Pfad

Gegeben:
> Menge von Aufgaben a, jede benstigt gegebene Zeit t,

» Bedingungen a — 2, dass a fertiggestellt sein muss, bevor &’
begonnen werden kann (in ldsbaren Problemen zykelfrei).

Frage:
» Annahme: Beliebig viele Aufgaben parallel ausfiihrbar
» Wie lange bendtigen Sie fiir die Erledigung aller Aufgaben?

G. Roéger (Universitit Basel) Algorithmen und Datenstrukturen 17 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen

» Knoten s, e + fiir jede Aufgabe a zwei Knoten a5 und ae
> fiir alle a:

> Kante (s, as) mit Gewicht 0

> Kante (ae, e) mit Gewicht 0

> Kante (as, 3.) mit Gewicht t,

> fiir jede Bedingung a — a’ Kante (ae, a.) mit Gewicht 0

Kritischer Pfad fiir Aufgabe a ist langster Pfad von s zu a.
Wihle Startzeit fiir a als Gewicht eines kritischen Pfades.
— Ergibt optimale Gesamtausfiihrungszeit

(= Gewicht von langstem Pfad von s zu e)

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 18 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

C6.3 Bellman-Ford-Algorithmus

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 19 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Graphen: Ubersicht

— Reprasentation
— Exploration
Exploration:
Anwendungen
Minimale
Spannbiume Dijkstras
- e
Azyklische
Andere Graphen
e -
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Problem

> Bei negativen Kantengewichten kann es negative Zyklen
geben, d.h. Zyklen, bei denen die Summe der Kantengewichte
negativ ist.

> Liegt ein Knoten eines solchen Zyklus auf einem Pfad von s
nach v, kénnen wir Pfade finden, deren Gewicht niedriger als
jeder gegebene Wert ist.

— kein korrekt gestelltes Problem

> Alternative Fragestellung: Finde kiirzesten einfachen Pfad?
— NP-schweres (= sehr schwieriges) Problem

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 21 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Fragestellung

In vielen praktischen Anwendungen sind negative Zyklen ein
Hinweis auf einen Modellierungsfehler.

Neue Fragestellung
Gegeben: Gewichteter Digraph, Startknoten s

Gefragt: Ist von s aus ein negativer Zyklus erreichbar?
Falls nein, berechne den Kiirzeste-Pfade-Baum
zu allen erreichbaren Knoten.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 22 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus: High-Level-Perspektive

In Graphen ohne negative Zyklen (aber mit negativen Gewichten):

Bellman-Ford-Algorithmus
> Initialisiere distance[s] = 0 fiir Startknoten s,
distance[n] = oo fiir alle anderen Knoten.
» Dann |V| Durchlaufe, in denen
jeweils alle Kanten relaxiert werden.

Proposition

Das Verfahren I6st das Single-Source-Shortest-Paths-Problem fiir
Graphen ohne negative Zyklen in Zeit O(|E||V|) und mit
zus&tzlichem Speicher O(|V|).

Beweisidee: Nach i Durchgingen ist jeder Pfad zu v mindestens so
kurz wie jeder Pfad zu v mit hochstens i Kanten.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Effizientere Variante

» Andert sich distance[v] in Durchgang i nicht, dndert auch
keine Relaxierung einer von v ausgehenden Kante in
Durchgang i + 1 etwas.

> |dee: Merke dir Knoten mit verdnderter distance in Queue.

» |In der Praxis deutlich schneller, auch wenn sich das
Worst-Case-Verhalten nicht verbessert.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Was ist mit negativen Zyklen?

> Ist von s aus kein negativer Zyklus erreichbar, wird im |V/|-ten
Durchgang keine Knotendistanz mehr geupdated.

» Gibt es einen negativen Zyklus, fiihrt dies zu einem Zyklus
mit den in edge_to gespeicherten Kanten.

» In der Praxis testen wir das nach jedem Durchlauf.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25 / 30

C6. Kiirzeste Pfade: Algorithmen

Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus

1 class BellmanFordSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self .distance = [float('inf')] * graph.no_nodes()
5 self.in_queue = [False] * graph.no_nodes()
6 self.queue = deque()

7 self.calls_to_relax = 0O

8 self.cycle = None

9

10 self .distance[start_node] = 0

11 self.queue.append(start_node)

12 self.in_queue[start_node] = True

13 while (not self.has_negative_cycle() and
14 self .queue): # queue not empty

15 node = self.queue.popleft()

16 self.in_queue[node] = False

17 self.relax(graph, node)

18

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

26 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus (Fortsetzung)

19 def relax(self, graph, v):

20 for edge in graph.adjacent_edges(v):

21 w = edge.to_node()

22 if self.distance[v] + edge.weight() < self.distancel[w]:
23 self.edge_tol[w] = edge

24 self.distance[w] = self.distance[v] + edge.weight()
25 if not self.in_queue[w]:

26 self . queue.append (w)

27 self.in_queue[w] = True

28 self.calls_to_relax += 1

29 if self.calls_to_relax J graph.no_nodes() ==

30 self.find_negative_cycle()

31

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27 / 30

C6. Kiirzeste Pfade: Algorithmen

Bellman-Ford-Algorithmus (Fortsetzung)

32 def has_negative_cycle(self):

33 return self.cycle is not None

34

35 def find_negative_cycle(self):

36 no_nodes = len(self.distance)

37 graph = EdgeWeightedDigraph(no_nodes)
38 for edge in self.edge_to:

39 if edge is not Nome:

40 graph.add_edge (edge)

41

42 cycle_finder = WeightedDirectedCycle(graph)
43 self.cycle = cycle_finder.get_cycle()

Bellman-Ford-Algorithmus

WeightedDirectedCycle detektiert gerichtete Zykel in
gewichteten Graphen.
— Folge von Tiefensuchen wie in DirectedCycle (C2)

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

28 / 30

C6. Kiirzeste Pfade: Algorithmen

C6.4 Zusammenfassung

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

29 /

30

C6. Kiirzeste Pfade: Algorithmen Zusammenfassung

Zusammenfassung

» Nicht-negative Gewichte

» Sehr haufiges Problem
» Dijkstras Algorithmus mit Laufzeit O(|E|log |V/|)

» Azyklische Graphen
» Kommt in manchen Anwendungen vor und sollte ausgenutzt
werden.
> Mit topologischer Sortierung in linearer Zeit O(|E| + |V])
> Negative Gewichte oder negative Zykel
» Gibt es keinen negativen Zyklus findet der
Bellman-Ford-Algorithmus kiirzeste Pfade.
> Sonst findet er einen negativen Zyklus.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

30 /

30

	Dijkstras Algorithmus
	

	Azyklische Graphen
	

	Bellman-Ford-Algorithmus
	

	Zusammenfassung
	

