Algorithmen und Datenstrukturen
C6. Kiirzeste Pfade: Algorithmen

Gabriele Roger

Universitat Basel

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 1/30

Algorithmen und Datenstrukturen
— C6. Kiirzeste Pfade: Algorithmen

C6.1 Dijkstras Algorithmus
C6.2 Azyklische Graphen
C6.3 Bellman-Ford-Algorithmus

C6.4 Zusammenfassung

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2 /30

C6. Kiirzeste Pfade: Algorithmen Dijkstras Algorithmus

C6.1 Dijkstras Algorithmus

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 3 /30

C6. Kiirzeste Pfade: Algorithmen Dijkstras Algorithmus

Graphen: Ubersicht

Représentation

Exploration

Exploration:
Anwendungen

Grundlagen

Minimale
Spannbiume

B e | Graphen
| Graphenprobleme

Algorithmus von
Bellman und Ford

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4 /30

C6. Kiirzeste Pfade: Algorithmen Dijkstras Algorithmus

Dijkstras Algorithmus: High-Level-Perspektive

Algorithmus von Dijkstra (fiir nicht-negative Kantengewichte)
Baue Kiirzeste-Pfade-Baum ausgehend von Startknoten s auf:

» Betrachte Knoten (die noch nicht im Baum sind) in
aufsteigender Reihenfolge ihres Abstandes von s.

» Nimm Knoten in Baum auf und relaxiere ausgehende Kanten.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

/30

C6. Kiirzeste Pfade: Algorithmen Dijkstras Algorithmus

Dijkstras Algorithmus: lllustration

distance

~N O OB~ W NN = O
= N == =
[8[=[&]]=[5]°]

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 6 /30

C6. Kiirzeste Pfade: Algorithmen Dijkstras Algorithmus

Datenstrukturen

> edge _to: knotenindiziertes Array, das an Stelle v
die letzte Kante des kiirzesten bekannten Pfades enthilt.

> distance: knotenindiziertes Array, das an Stelle v die Kosten

des kiirzesten bekannten Pfades vom Startknoten zu v enthalt.

» pqg: indizierte Priority-Queue von Knoten

» Knoten noch nicht im Baum

» Bereits ein Pfad zu dem Knoten bekannt

» Sortiert nach Kosten des kiirzesten bekannten Pfades
zu dem Knoten.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

30

C6. Kiirzeste Pfade: Algorithmen

Dijkstras Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 8 /

class DijkstraSSSP:

def

def

__init__(self, graph, start_node):
self.edge_to = [None] * graph.no_nodes()
self .distance = [float('inf')] * graph.no_nodes()
pgq = IndexMinPQ()
self .distance[start_node] = 0
pq.insert(start_node, 0)
while not pq.empty():
self.relax(graph, pq.del_min(), pq)

relax(self, graph, v, pq):
for edge in graph.adjacent_edges(v):
w = edge.to_node()
if self.distance[v] + edge.weight() < self.distance[w]:
self.edge_to[w] = edge
self .distance[w] = self.distancel[v] + edge.weight()
if pq.contains(w):
pq.change(w, self.distance[w])
else:
pq.insert(w, self.distance[w])

Dijkstras Algorithmus

30

C6. Kiirzeste Pfade: Algorithmen Dijkstras Algorithmus

Korrektheit

Theorem
Dijkstras Algorithmus I6st das Single-Source-Shortest-Paths-
Problem in Digraphen mit nicht-negativen Gewichten.

Beweis.
> Ist v von Startknoten erreichbar, wird jede ausgehende Kante
e = (v, w) genau einmal relaxiert (wenn v relaxiert wird).
» Dann gilt distance[w] < distance[v] + weight(e).
» Ungleichung bleibt erfiillt:

» distance[v] wird nicht mehr verindert, da Wert minimal war
und es keine negativen Kantengewichte gibt.
» distance[w] wird hochstens kleiner.

» Sind alle erreichbaren Knoten relaxiert, ist
Optimalitatsbedingung erfiillt.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 9 /30

C6. Kiirzeste Pfade: Algorithmen Dijkstras Algorithmus

Vergleich zu Eager Prim-Algorithmus

Dijkstras Algorithmus sehr dhnlich zu Eager Prim-Algorithmus fiir
minimale Spannb3dume

» Beide bauen sukzessive einen Baum auf

» nachster Knoten Prim: minimale Distanz zu bisherigem Baum.
» nachster Knoten Dijkstra: minimale Distanz vom Startknoten.
>

included_nodes von Prim bei Dijkstra nicht notwendig,
da bei bereits erledigten Knoten die if-Bedingung
in Zeile 14 immer falsch ist.

Laufzeit O(|E|log|V/|) und Platzbedarf O(|V/|) direkt iibertragbar.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 10 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

C6.2 Azyklische Graphen

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 11 /30

C6. Kiirzeste Pfade: Algorithmen

Graphen: Ubersicht

G. Réger (Universitiat Basel)

Représentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbiume

Andere

Grundlagen

Dijkstras
Algorithmus

| Graphenprobleme

Algorithmus von
Bellman und Ford

Algorithmen und Datenstrukturen

Azyklische Graphen

12 /30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Zykelfreiheit ausnutzen

Gegeben: Azyklischer, gewichteter Digraph

Konnen wir die Zykelfreiheit beim Finden kiirzester Pfade nutzen?

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 13 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Beispiel

Idee: Relaxiere Knoten in topologischer Reihenfolge
zB.0,1,3 4,25, 7,6

13 distance

18 -1

~N O o B W N = O
= | = N =
HEREEIBEE

16

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 14 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Theorem

Theorem

Durch Relaxieren der Knoten in topologischer Reihenfolge wird das
Single-Source-Shortest-Paths-Problem fiir kantengewichtete,
azyklische Digraphen in Zeit O(|E| + |V|) gelést.

Beweis.
> Jede Kante e = (v, w) wird genau einmal relaxiert. Direkt
danach gilt distance[w] < distance[v] + weight(e).
» Ungleichung gilt bis zur Terminierung

> distance[w] wird nie grosser.

» distance[v] wird nicht mehr verdndert, da
alle eingehenden Kanten aufgrund der
topologischen Sortierung bereits relaxiert wurden.

— Optimalitatskriterium ist bei Terminierung erfiillt. O

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 15 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Verwandte Probleme: Langste Pfade

Definition (Langste Pfade in azylischen Graphen)

Gegeben: Kantengewichteter, azyklischer Digraph, Startknoten s
Gefragt: Gibt es einen Pfad von s zu Knoten v?
Falls ja, finde den Pfad mit maximalem Gewicht.

Multipliziere alle Kantengewichte mit —1 und verwende
Kiirzeste-Pfade-Algorithmus.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 16 / 30

C6. Kiirzeste Pfade: Algorithmen Azyklische Graphen

Verwandte Probleme: Kritischer Pfad

Gegeben:
> Menge von Aufgaben a, jede bendtigt gegebene Zeit t,

» Bedingungen a — 2/, dass a fertiggestellt sein muss, bevor 2’
begonnen werden kann (in I6sbaren Problemen zykelfrei).

Frage:
> Annahme: Beliebig viele Aufgaben parallel ausfiihrbar
» Wie lange benétigen Sie fiir die Erledigung aller Aufgaben?

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 17 / 30

C6. Kiirzeste Pfade: Algorithmen

Verwandte Probleme: Kritischer Pfad

Erstelle kantengewichteten Digraphen
> Knoten s, e + fiir jede Aufgabe a zwei Knoten a5 und ae
> fiir alle a:
> Kante (s, as) mit Gewicht 0

> Kante (&, €) mit Gewicht 0
> Kante (as, a.) mit Gewicht t,

> fiir jede Bedingung a — a’ Kante (ae, a) mit Gewicht 0

Kritischer Pfad fiir Aufgabe a ist langster Pfad von s zu as.
Wihle Startzeit fiir a als Gewicht eines kritischen Pfades.
— Ergibt optimale Gesamtausfiihrungszeit

(= Gewicht von langstem Pfad von s zu e)

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

Azyklische Graphen

18 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

C6.3 Bellman-Ford-Algorithmus

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 19 / 30

C6. Kiirzeste Pfade: Algorithmen

Graphen: Ubersicht

G. Réger (Universitiat Basel)

Bellman-Ford-Algorithmus

—| Reprasentation
— Exploration
|| Exploration:
Anwendungen
- Grundlagen
Minimale
Spannb3aume i Dijkstras
- e
i Azyklische
Andere GiEpe

Algorithmen und Datenstrukturen

20 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Problem

P Bei negativen Kantengewichten kann es negative Zyklen
geben, d.h. Zyklen, bei denen die Summe der Kantengewichte
negativ ist.

> Liegt ein Knoten eines solchen Zyklus auf einem Pfad von s
nach v, kénnen wir Pfade finden, deren Gewicht niedriger als
jeder gegebene Wert ist.

— kein korrekt gestelltes Problem

> Alternative Fragestellung: Finde kiirzesten einfachen Pfad?
— NP-schweres (= sehr schwieriges) Problem

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 21

/30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Fragestellung

In vielen praktischen Anwendungen sind negative Zyklen ein
Hinweis auf einen Modellierungsfehler.

Neue Fragestellung

Gegeben: Gewichteter Digraph, Startknoten s

Gefragt: Ist von s aus ein negativer Zyklus erreichbar?
Falls nein, berechne den Kiirzeste-Pfade-Baum
zu allen erreichbaren Knoten.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 22 /30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus: High-Level-Perspektive

In Graphen ohne negative Zyklen (aber mit negativen Gewichten):

Bellman-Ford-Algorithmus
» Initialisiere distance[s] = 0 fiir Startknoten s,
distance[n] = oo fiir alle anderen Knoten.
» Dann |V/| Durchlaufe, in denen
jeweils alle Kanten relaxiert werden.

Proposition

Das Verfahren I6st das Single-Source-Shortest-Paths-Problem fiir
Graphen ohne negative Zyklen in Zeit O(|E||V|) und mit
zusatzlichem Speicher O(| V).

Beweisidee: Nach i Durchgangen ist jeder Pfad zu v mindestens so
kurz wie jeder Pfad zu v mit héchstens i Kanten.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 23 /30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Effizientere Variante

» Andert sich distance[v] in Durchgang i nicht, dndert auch
keine Relaxierung einer von v ausgehenden Kante in
Durchgang i + 1 etwas.

» |dee: Merke dir Knoten mit veranderter distance in Queue.

» In der Praxis deutlich schneller, auch wenn sich das
Worst-Case-Verhalten nicht verbessert.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 24 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Was ist mit negativen Zyklen?

> Ist von s aus kein negativer Zyklus erreichbar, wird im |V/|-ten
Durchgang keine Knotendistanz mehr geupdated.

> Gibt es einen negativen Zyklus, fiihrt dies zu einem Zyklus
mit den in edge_to gespeicherten Kanten.

» In der Praxis testen wir das nach jedem Durchlauf.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

25

30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus

1 class BellmanFordSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self .distance = [float('inf')] * graph.no_nodes()
5 self.in_queue = [False] * graph.no_nodes()

6 self.queue = deque()

7 self.calls_to_relax = 0

8 self.cycle = None

9

10 self.distance[start_node] = 0

11 self.queue.append(start_node)

12 self.in_queue[start_node] = True

13 while (not self.has_negative_cycle() and
14 self.queue): # queue not empty
15 node = self.queue.popleft()

16 self.in_queue[node] = False

17 self.relax(graph, node)

18

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 26 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus (Fortsetzung)

19 def relax(self, graph, v):

20 for edge in graph.adjacent_edges(v):

21 w = edge.to_node()

22 if self.distance[v] + edge.weight() < self.distancel[w]:
23 self .edge_to[w] = edge

24 self .distance[w] = self.distance[v] + edge.weight()
25 if not self.in_queuel[w]:

26 self.queue.append (w)

27 self.in_queue[w] = True

28 self.calls_to_relax += 1

29 if self.calls_to_relax J, graph.no_nodes() ==

30 self.find_negative_cycle()

31

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 27 / 30

C6. Kiirzeste Pfade: Algorithmen Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus (Fortsetzung)

32 def has_negative_cycle(self):

33 return self.cycle is not None

34

35 def find_negative_cycle(self):

36 no_nodes = len(self.distance)

37 graph = EdgeWeightedDigraph(no_nodes)
38 for edge in self.edge_to:

39 if edge is not None:

40 graph.add_edge (edge)

41

42 cycle_finder = WeightedDirectedCycle(graph)
43 self.cycle = cycle_finder.get_cycle()

WeightedDirectedCycle detektiert gerichtete Zykel in
gewichteten Graphen.
— Folge von Tiefensuchen wie in DirectedCycle (C2)

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 28 / 30

C6. Kiirzeste Pfade: Algorithmen Zusammenfassung

C6.4 Zusammenfassung

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 29 / 30

C6. Kiirzeste Pfade: Algorithmen Zusammenfassung

Zusammenfassung

» Nicht-negative Gewichte
» Sehr hiufiges Problem
> Dijkstras Algorithmus mit Laufzeit O(|E|log V)
» Azyklische Graphen
» Kommt in manchen Anwendungen vor und sollte ausgenutzt
werden.
> Mit topologischer Sortierung in linearer Zeit O(|E| + |V|)
> Negative Gewichte oder negative Zykel

P Gibt es keinen negativen Zyklus findet der
Bellman-Ford-Algorithmus kiirzeste Pfade.
» Sonst findet er einen negativen Zyklus.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

30 / 30

	Dijkstras Algorithmus
	

	Azyklische Graphen
	

	Bellman-Ford-Algorithmus
	

	Zusammenfassung
	

