Algorithmen und Datenstrukturen
C5. Kiirzeste Pfade: Grundlagen

Gabriele Roger

Universitat Basel

Graphen: Ubersicht

| Reprdsentation
— Exploration
Exploration:
Anwendungen
Minimale
Spannbiaume Dijkstras
-_ e
| Azyklische
| Andere Graphen
Graphenprobleme | Algorithmus von
Bellman und Ford

Einfiihrung

Einfiihrung
(o] Jelele]

Google Maps

Notfll Apothee Basel @ % y
niersist Besel, e N i
Y Slomedizn e o e ® \ 5
Bluspendezentum % %
Heg SRK beider Basel £ °
St i Soon @ £
Basie Kantonaloank %
gasee
e)
o, @ fossiessgasse
s £ 7min o
som Polizeimuseum iy
Universitat oty BaselStadt V. ,
Basel 5o : 1
5 Dt Basel Schifflsnde £
Widtsches Haus B incien restaurin o NG,
am Petersplatz g i race R
i o academia Basel
% scademia Basel
&5 & Toyswore {nistor
£ 6min oop | Toysur Had
[Q@roicne Spemanat
'} 9 A S A,
g /] P a—
N Judisches wuseum der
& W Schweiz/ Galre Y Ry
g jconis Ftory Martnskichplatz
£
L) : : sitsgpsse ger (Bar GLOBUS Basel
lologie i Lounge / Club) Warenhaus
WooftcoOnmaning ! 9
der Univrsiat Basel
T @ souueaty el
Angel oder Aff
& H
e f vatclozBE
£ Andreasplatz 3
1 : 2 ¢ Gifthat %
5 Vesalianum McDonald's
staurant zum Toll 5
ki Hoosesaggmuseum
W le Basel Tattoo Productions

SO i chan

Einfiihrung
[e]e] Tele]

Inhaltsabhangige Bildverzerrung (Seam Carving)

Einfiihrung

[e]e]e] o}

Anwendungen

Routenplanung

Pfadplanung in Computerspielen

Roboternavigation

Seam Carving

Handlungsplanung

Typesetting in TeX

Routingprotokolle in Netzwerken (OSPF, BGP, RIP)
Routing von Telekommunikationsnachrichten
Verkehrsplanung

Ausnutzen von Arbitrage-Moglichkeiten in Wechselkursen

Quelle (teilweise): Network Flows: Theory, Algorithms, and Applications,
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993

Dptimalitdtskriterium und Generisches Ve

Einfiihrung
0000e

Varianten

Was interessiert uns?
m Single source: von einem Knoten s zu allen anderen Knoten
m Single sink: von allen Knoten zu einem Knoten ¢
m Source-sink: von Knoten s zu Knoten t

m All pairs: von jedem Knoten zu jedem anderen

litdtskriterium und Generisches V

Einfiihrung

[e]e]ee] }

Varianten

Was interessiert uns?
m Single source: von einem Knoten s zu allen anderen Knoten
m Single sink: von allen Knoten zu einem Knoten ¢
m Source-sink: von Knoten s zu Knoten t

m All pairs: von jedem Knoten zu jedem anderen

Grapheigenschaften
m Beliebige / nicht-negative / euklidische Gewichte
m Beliebige / nicht-negative / keine Zyklen

Grundlagen
©0000000000

Grundlagen

Einfithrung Grundlagen Optimalititskriterium und Generisches Verfahren

000« O®@000000000

Gewichtete gerichtete Graphen

Die (high-level) Definition gewichteter Graphen bleibt gleich,
wir betrachten jetzt aber gerichtete Graphen.

Einfiihrung Grundlagen Optimalitatskriterium und Generisches Verfahre

OO0C O®@000000000)OO O(

Gewichtete gerichtete Graphen

Die (high-level) Definition gewichteter Graphen bleibt gleich,
wir betrachten jetzt aber gerichtete Graphen.

Gewichteter Graph

Bei einem (kanten-)gewichteten Graphen hat jede Kante e € E
ein Gewicht (oder Kosten) weight(e) aus den reellen Zahlen.

Erinnerung: Ein gerichteter Graph heisst auch Digraph.

Grundlagen
00®00000000

API fiir gewichtete, gerichtete Kante

1 class DirectedEdge:

2 # Kante wvon nl zu n2 mit Gewicht w
3 def __init__(nl: int, n2: int, w: float) -> None
4

5 # Gewicht der Kante

6 def weight() -> float

7

8 # Knoten, von dem Kante ausgeht

9 def from_node() -> int

10

11 # Knoten, zu dem die Kante fihrt

12 def to_node() -> int

Grundlagen
000®0000000

API fiir gewichtete Digraphen

1 class EdgeWeightedDigraph:

2 # Graph mit no_nodes Knoten und keinen Kanten
3 def __init__(no_nodes: int) -> None

4

5 # Fiuge gewichtete Kante hinzu

6 def add_edge(e: DirectedEdge) -> None

7

8 # Anzahl der Knoten

9 def no_nodes() -> int

10

11 # Anzahl der Kanten

12 def no_edges() -> int

13

14 # Alle Kanten, die von n ausgehen

15 def adjacent_edges(n: int) -> Generator[DirectedEdge]
16

17 # Alle Kanten

18 def all_edges() -> Generator[DirectedEdgel

Grundlagen O litdtskriterium und Generisches Verfahren
0000®000000 5

Kiirzeste-Pfade-Problem

Kiirzeste-Pfade-Problem mit einem Startknoten, SSSP
m Gegeben: Graph und Startknoten s

m Anfrage fiir Knoten v

m Gibt es Pfad von s nach v?
m Wenn ja, was ist der kiirzeste Pfad?

Engl. single-source shortest paths problem

Grundlagen O litdtskriterium und Generisches Verfahren
0000®000000 5

Kiirzeste-Pfade-Problem

Kiirzeste-Pfade-Problem mit einem Startknoten, SSSP
m Gegeben: Graph und Startknoten s

m Anfrage fiir Knoten v
m Gibt es Pfad von s nach v?
m Wenn ja, was ist der kiirzeste Pfad?
m In kantengewichteten Graphen:
Kiirzester Pfad ist der mit dem geringstem Gewicht
(= minimale Summe der Kantenkosten)

Engl. single-source shortest paths problem

Grundlagen
00000800000

API fiir Kiirzeste-Pfade-Implementierungen

Die Algorithmen fiir kiirzeste Pfade sollen folgendes Interface
implementieren:

class ShortestPaths:
Konstruktor mit Startknoten s
def __init__(graph: EdgeWeightedDigraph, s: int) -> None

def dist_to(v: int) -> float

1
2
3
4
5 # Abstand wvon s zu v; infinity, falls kein Pfad exzistiert
6
7
8 # Gibt es Pfad von s zu v?

9 def has_path_to(v: int) -> bool

10

11 # Pfad von s zu v; None, falls keiner vorhanden

12 def path_to(v: int) -> Generator[DirectedEdge]

Grundlagen O litdtskriterium und Generisches Verfahren
000000@0000 5

Kiirzeste-Pfade-Baum

Kurzeste-Pfade-Baum

Fiir einen kantengewichteten Digraphen G und Knoten s ist ein
Kiirzeste-Pfade-Baum ein Teilgraph, der

m einen gerichteten Baum mit Wurzel s bildet,

m alle von s aus erreichbaren Knoten enthilt, und

m bei dem jeder Baumpfad ein kiirzester Pfad in G ist.

Grundlagen

00000008000

Kiirzeste-Pfade-Baum: Reprasentation

Reprasentation: knotenindizierte Arrays
m parent mit Elternknotenreferenz
Leer fiir nicht erreichbare und Startknoten

m distance mit Abstand vom Startknoten
oo fur nicht erreichbare Knoten

0123 45¢67
parent‘5| |3|6|1H1|4H6‘

01234567
aisvance [4]0]4]2]1]2]3]4]

Grundlagen
00000008000

Kiirzeste-Pfade-Baum: Reprasentation

Reprasentation: knotenindizierte Arrays
m parent mit Elternknotenreferenz
Leer fiir nicht erreichbare und Startknoten

m distance mit Abstand vom Startknoten
oo fur nicht erreichbare Knoten

0123 45¢67
parent‘5| |3|6|1H1|4H6‘

01234567
aisvance [4]0]4]2]1]2]3]4]

Was ist mit parallelen Kanten?

Grundlagen
00000000800

Extraktion der kiirzesten Pfade

1 def path_to(self, node):

2 if self.distance[node] == float('inf'):

3 yield None

4 elif node == self.start:

5 yield node

6 else:

7 # output path from start to parent node
8 self.path_to(self.parent[node])

9 # finish with node

10 yield node

Grundlagen O litdtskriterium und Generisches Verfahren

0O00000000e0

Kantenrelaxierung

Kantenrelaxierung fiir Kante (u, v)
m distance[u]: Lange des kiirzesten bekannten Pfades zu u
m distance[v]: Lange des kiirzesten bekannten Pfades zu v

m parent [v]: Vorganger in letzter Kante
des kiirzesten bekannten Weges zu v

Ermoglicht Kante (u, v) einen kiirzeren Weg zu v (durch u)?

Dann update distance[v] und parent [v].

Illustration: Tafel

Grundlagen
00000000000

Kantenrelaxierung

def relax(self, edge):
u = edge.from_node()

v = edge.to_node()
if self.distance[v] > self.distance[u] + edge.weight():
self.parent[v] =
self.distance[v]

D s W N =

u
= self.distance[u] + edge.weight()

Optimalititskriterium und Generisches Verfahren

[Jelele]e}

Optimalitatskriterium und
Generisches Verfahren

Einfiihrung Optimalitatskriterium und Generisches Verfahren

[e] lele]e}

Optimalitatskriterium

Theorem

Sei G ein gewichteter Digraph ohne negative Zyklen.
Array distance[] enthalt die Kosten der kiirzesten Pfade von s
genau dann, wenn

O distancels] =0

@ distance[w] < distance[v] + weight(e)
fiir alle Kanten e = (v, w), und

@ fiir alle Knoten v ist distance[v] die Lange irgendeines
Pfades von s zu v bzw. oo, falls kein solcher Pfad existiert.

Optimalititskriterium und Generisches Verfahren
0000

Optimalitatskriterium (Forts.)

Beweis

H:

Da der Graph keine Zyklen mit negativen Gesamtkosten enthilt,
kann kein Pfad von s zu s negative Kosten haben. Die Kosten des
leeren Pfades sind damit optimal und distance[s] ist 0.

Optimalititskriterium und Generisches Verfahren
0000

Optimalitatskriterium (Forts.)

Beweis

“

YY:

Da der Graph keine Zyklen mit negativen Gesamtkosten enthilt,
kann kein Pfad von s zu s negative Kosten haben. Die Kosten des
leeren Pfades sind damit optimal und distance[s] ist 0.

Betrachte beliebige Kante e von u nach v.

Der kiirzeste Pfad von s nach v hat Kosten distance [u].
Erweitern wir diesen Pfad um Kante e, erhalten wir einen Pfad von
s zu v mit Kosten distance[u] + weight(e). Die Kosten eine
kiirzesten Pfades von s zu v konnen also nicht grosser sein und es
gilt distance[v] < distance[u] + weight(e).

Einfiihrung

[e]e]e] o}

Optimalitatskriterium (Forts.)

Beweis (Fortsetzung).

“

"<
Fiir unerreichbare Knoten ist der Wert per Definition unendlich.

Betrachte beliebigen Knoten v und kiirzesten Pfad
p=(v,...,vs)von s zu v, d.h. vp =5, v, = v.
Sei €; jeweils eine giinstigste Kante von v;_; zu v;.
Da alle Ungleichungen erfiillt sind, gilt

distance[v,] < distance|v,_1] + weight(e,)
< distance|v,_2| + weight(e,_1) + weight(e,)
< ... < weight(er) + - - - + weight(ep)

= Kosten des optimalen Pfads

Wegen Punkt 3 ist distance[v,| auch nicht echt kleiner als die
optimalen Pfadkosten.

0J

Optimalititskriterium und Generisches Verfahren

v

Optimalititskriterium und Generisches Verfahren
0000®

Generischer Algorithmus

Generischer Algorithmus fiir Startknoten s

m Initialisiere distance[s] = 0 und
distance[v] = oo fiir alle anderen Knoten

m Solange das Optimalitatskriterium nicht erfiillt ist:
Relaxiere eine beliebige Kante

Korrekt:
m Endliches distance[v] entspricht immer den Kosten eines
Pfades von s zu v.
m Jede erfolgreiche Relaxierung reduziert distance[v] fiir ein v.
m Fiir jeden Knoten kann Distanz nur endlich oft reduziert
werden.

	Einführung
	

	Grundlagen
	

	Optimalitätskriterium und Generisches Verfahren
	

