
Algorithmen und Datenstrukturen
C5. Kürzeste Pfade: Grundlagen

Gabriele Röger

Universität Basel

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Grundlagen

Dijkstras
Algorithmus

Azyklische
Graphen

Algorithmus von
Bellman und Ford

Andere
Graphenprobleme

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Einführung

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Google Maps

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Inhaltsabhängige Bildverzerrung (Seam Carving)

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Anwendungen

Routenplanung

Pfadplanung in Computerspielen

Roboternavigation

Seam Carving

Handlungsplanung

Typesetting in TeX

Routingprotokolle in Netzwerken (OSPF, BGP, RIP)

Routing von Telekommunikationsnachrichten

Verkehrsplanung

Ausnutzen von Arbitrage-Möglichkeiten in Wechselkursen

Quelle (teilweise): Network Flows: Theory, Algorithms, and Applications,
Quellei (teilweise): R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Varianten

Was interessiert uns?

Single source: von einem Knoten s zu allen anderen Knoten

Single sink: von allen Knoten zu einem Knoten t

Source-sink: von Knoten s zu Knoten t

All pairs: von jedem Knoten zu jedem anderen

Grapheigenschaften

Beliebige / nicht-negative / euklidische Gewichte

Beliebige / nicht-negative / keine Zyklen

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Varianten

Was interessiert uns?

Single source: von einem Knoten s zu allen anderen Knoten

Single sink: von allen Knoten zu einem Knoten t

Source-sink: von Knoten s zu Knoten t

All pairs: von jedem Knoten zu jedem anderen

Grapheigenschaften

Beliebige / nicht-negative / euklidische Gewichte

Beliebige / nicht-negative / keine Zyklen

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Grundlagen

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Gewichtete gerichtete Graphen

Die (high-level) Definition gewichteter Graphen bleibt gleich,
wir betrachten jetzt aber gerichtete Graphen.

Gewichteter Graph

Bei einem (kanten-)gewichteten Graphen hat jede Kante e ∈ E
ein Gewicht (oder Kosten) weight(e) aus den reellen Zahlen.

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

-1

5

2

2

1

5

Erinnerung: Ein gerichteter Graph heisst auch Digraph.

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Gewichtete gerichtete Graphen

Die (high-level) Definition gewichteter Graphen bleibt gleich,
wir betrachten jetzt aber gerichtete Graphen.

Gewichteter Graph

Bei einem (kanten-)gewichteten Graphen hat jede Kante e ∈ E
ein Gewicht (oder Kosten) weight(e) aus den reellen Zahlen.

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

-1

5

2

2

1

5

Erinnerung: Ein gerichteter Graph heisst auch Digraph.

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

API für gewichtete, gerichtete Kante

1 class DirectedEdge:

2 # Kante von n1 zu n2 mit Gewicht w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # Gewicht der Kante

6 def weight() -> float

7

8 # Knoten, von dem Kante ausgeht

9 def from_node() -> int

10

11 # Knoten, zu dem die Kante führt

12 def to_node() -> int

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

API für gewichtete Digraphen

1 class EdgeWeightedDigraph:

2 # Graph mit no_nodes Knoten und keinen Kanten

3 def __init__(no_nodes: int) -> None

4

5 # Füge gewichtete Kante hinzu

6 def add_edge(e: DirectedEdge) -> None

7

8 # Anzahl der Knoten

9 def no_nodes() -> int

10

11 # Anzahl der Kanten

12 def no_edges() -> int

13

14 # Alle Kanten, die von n ausgehen

15 def adjacent_edges(n: int) -> Generator[DirectedEdge]

16

17 # Alle Kanten

18 def all_edges() -> Generator[DirectedEdge]

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Kürzeste-Pfade-Problem

Kürzeste-Pfade-Problem mit einem Startknoten, SSSP

Gegeben: Graph und Startknoten s

Anfrage für Knoten v

Gibt es Pfad von s nach v?
Wenn ja, was ist der kürzeste Pfad?

In kantengewichteten Graphen:
Kürzester Pfad ist der mit dem geringstem Gewicht
(= minimale Summe der Kantenkosten)

Engl. single-source shortest paths problem

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Kürzeste-Pfade-Problem

Kürzeste-Pfade-Problem mit einem Startknoten, SSSP

Gegeben: Graph und Startknoten s

Anfrage für Knoten v

Gibt es Pfad von s nach v?
Wenn ja, was ist der kürzeste Pfad?

In kantengewichteten Graphen:
Kürzester Pfad ist der mit dem geringstem Gewicht
(= minimale Summe der Kantenkosten)

Engl. single-source shortest paths problem

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

API für Kürzeste-Pfade-Implementierungen

Die Algorithmen für kürzeste Pfade sollen folgendes Interface
implementieren:

1 class ShortestPaths:

2 # Konstruktor mit Startknoten s

3 def __init__(graph: EdgeWeightedDigraph, s: int) -> None

4

5 # Abstand von s zu v; infinity, falls kein Pfad existiert

6 def dist_to(v: int) -> float

7

8 # Gibt es Pfad von s zu v?

9 def has_path_to(v: int) -> bool

10

11 # Pfad von s zu v; None, falls keiner vorhanden

12 def path_to(v: int) -> Generator[DirectedEdge]

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Kürzeste-Pfade-Baum

Kürzeste-Pfade-Baum

Für einen kantengewichteten Digraphen G und Knoten s ist ein
Kürzeste-Pfade-Baum ein Teilgraph, der

einen gerichteten Baum mit Wurzel s bildet,

alle von s aus erreichbaren Knoten enthält, und

bei dem jeder Baumpfad ein kürzester Pfad in G ist.

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

5

2

2

2 -1

1

5

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Kürzeste-Pfade-Baum: Repräsentation

Repräsentation: knotenindizierte Arrays

parent mit Elternknotenreferenz
Leer für nicht erreichbare und Startknoten

distance mit Abstand vom Startknoten
∞ für nicht erreichbare Knoten

parent

0 1 2 3 4 5 6 7

5 1 3 6 1 1 4 6

distance

0 1 2 3 4 5 6 7

4 0 4 2 1 2 3 4

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

5

2

2

2 -1

1

5

Was ist mit parallelen Kanten?

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Kürzeste-Pfade-Baum: Repräsentation

Repräsentation: knotenindizierte Arrays

parent mit Elternknotenreferenz
Leer für nicht erreichbare und Startknoten

distance mit Abstand vom Startknoten
∞ für nicht erreichbare Knoten

parent

0 1 2 3 4 5 6 7

5 1 3 6 1 1 4 6

distance

0 1 2 3 4 5 6 7

4 0 4 2 1 2 3 4

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

5

2

2

2 -1

1

5

Was ist mit parallelen Kanten?

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Extraktion der kürzesten Pfade

1 def path_to(self, node):

2 if self.distance[node] == float('inf'):

3 yield None

4 elif node == self.start:

5 yield node

6 else:

7 # output path from start to parent node

8 self.path_to(self.parent[node])

9 # finish with node

10 yield node

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Kantenrelaxierung

Kantenrelaxierung für Kante (u, v)

distance[u]: Länge des kürzesten bekannten Pfades zu u

distance[v]: Länge des kürzesten bekannten Pfades zu v

parent[v]: Vorgänger in letzter Kante
des kürzesten bekannten Weges zu v

Ermöglicht Kante (u, v) einen kürzeren Weg zu v (durch u)?

Dann update distance[v] und parent[v].

Illustration: Tafel

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Kantenrelaxierung

1 def relax(self, edge):

2 u = edge.from_node()

3 v = edge.to_node()

4 if self.distance[v] > self.distance[u] + edge.weight():

5 self.parent[v] = u

6 self.distance[v] = self.distance[u] + edge.weight()

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Optimalitätskriterium und
Generisches Verfahren

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Optimalitätskriterium

Theorem

Sei G ein gewichteter Digraph ohne negative Zyklen.
Array distance[] enthält die Kosten der kürzesten Pfade von s
genau dann, wenn

1 distance[s] = 0

2 distance[w] ≤ distance[v] + weight(e)
für alle Kanten e = (v ,w), und

3 für alle Knoten v ist distance[v] die Länge irgendeines
Pfades von s zu v bzw. ∞, falls kein solcher Pfad existiert.

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Optimalitätskriterium (Forts.)

Beweis

”
⇒“

Da der Graph keine Zyklen mit negativen Gesamtkosten enthält,
kann kein Pfad von s zu s negative Kosten haben. Die Kosten des
leeren Pfades sind damit optimal und distance[s] ist 0.

Betrachte beliebige Kante e von u nach v .

Der kürzeste Pfad von s nach u hat Kosten distance[u].
Erweitern wir diesen Pfad um Kante e, erhalten wir einen Pfad von
s zu v mit Kosten distance[u] + weight(e). Die Kosten eine
kürzesten Pfades von s zu v können also nicht grösser sein und es
gilt distance[v] ≤ distance[u] + weight(e). . . .

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Optimalitätskriterium (Forts.)

Beweis

”
⇒“

Da der Graph keine Zyklen mit negativen Gesamtkosten enthält,
kann kein Pfad von s zu s negative Kosten haben. Die Kosten des
leeren Pfades sind damit optimal und distance[s] ist 0.

Betrachte beliebige Kante e von u nach v .

Der kürzeste Pfad von s nach u hat Kosten distance[u].
Erweitern wir diesen Pfad um Kante e, erhalten wir einen Pfad von
s zu v mit Kosten distance[u] + weight(e). Die Kosten eine
kürzesten Pfades von s zu v können also nicht grösser sein und es
gilt distance[v] ≤ distance[u] + weight(e). . . .

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Optimalitätskriterium (Forts.)

Beweis (Fortsetzung).

”
⇐“

Für unerreichbare Knoten ist der Wert per Definition unendlich.

Betrachte beliebigen Knoten v und kürzesten Pfad
p = (v0, . . . , vn) von s zu v , d.h. v0 = s, vn = v .
Sei ei jeweils eine günstigste Kante von vi−1 zu vi .
Da alle Ungleichungen erfüllt sind, gilt

distance[vn] ≤ distance[vn−1] + weight(en)

≤ distance[vn−2] + weight(en−1) + weight(en)

≤ . . . ≤ weight(e1) + · · ·+ weight(en)

= Kosten des optimalen Pfads

Wegen Punkt 3 ist distance[vn] auch nicht echt kleiner als die
optimalen Pfadkosten.

Einführung Grundlagen Optimalitätskriterium und Generisches Verfahren

Generischer Algorithmus

Generischer Algorithmus für Startknoten s

Initialisiere distance[s] = 0 und
distance[v] =∞ für alle anderen Knoten

Solange das Optimalitätskriterium nicht erfüllt ist:
Relaxiere eine beliebige Kante

Korrekt:

Endliches distance[v] entspricht immer den Kosten eines
Pfades von s zu v.

Jede erfolgreiche Relaxierung reduziert distance[v] für ein v.

Für jeden Knoten kann Distanz nur endlich oft reduziert
werden.

	Einführung
	

	Grundlagen
	

	Optimalitätskriterium und Generisches Verfahren
	

