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Ungerichtete Graphen

In Kapitel C4 betrachten wir nur ungerichtete Graphen. ]
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Baume in ungerichteten Graphen

Definition

Ein Baum ist ein azyklischer, zusammenhadngender Graph.
Eine disjunkte Menge von Baumen wird Wald genannt.
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Eigenschaften von Baumen

Fiir jeden Baum gilt:

m Jedes Knotenpaar ist durch genau einen einfachen Pfad
verbunden (einfach = kein Knoten kommt zweimal vor).

m Entfernt man eine Kante, zerfallt er zu einem Graphen
mit zwei Zusammenhangskomponenten.

m Fiigt man eine Kante hinzu, erzeugt man einen Zyklus.
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Teilgraph

Definition
Graph G’ = (V/, E’) ist ein Teilgraph von Graph G = (V, E)
falls V' C V und E' C E.

O
© ®
®
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Spannbaum

Definition
Ein Spannbaum eines zusammenh&ngenden Graphen ist ein
Teilgraph, der alle Knoten des Graphen enthilt und ein Baum ist.

Ein Spannwald eines (nicht zusammenhingenden) Graphen
ist die Vereinigung von je einem Spannbaum fiir jede
Zusammenhangskomponente zu einem Graphen.
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Spannbaum

Definition
Ein Spannbaum eines zusammenh&ngenden Graphen ist ein
Teilgraph, der alle Knoten des Graphen enthilt und ein Baum ist.

Ein Spannwald eines (nicht zusammenhingenden) Graphen
ist die Vereinigung von je einem Spannbaum fiir jede
Zusammenhangskomponente zu einem Graphen.

Wie viele Kanten hat ein Spannbaum?
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Gewichtete Graphen

Definition

Ein (kanten-)gewichteter Graph ordnet jeder Kante e € E ein
Gewicht (oder Kosten) weight(e) aus den reellen Zahlen zu.
Das Gewicht des Graphen ist die Summe . weight(e) der
Kantengewichte.
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Minimale Spannbaume

Definition (Minimum-Spanning-Tree-Problem, MST-Problem)

Gegeben: Gewichteter, ungerichteter, zusammenhangender Graph
Gesucht: Spannbaum mit minimalem Gewicht

(es gibt keinen Spannbaum, bei dem die Summe

der Kantengewichte geringer ist).
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Anwendung: Clustering zur Tumorerkennung

O Analysis of soft tissue tumors by an attributed minimum spanning

tree.
Kayser K', Sandau K, Bshm G, Kunze KD, Paul

Analytical and Quantitative Cytology and Histology [01 Oct 1991, 13(5):329-334]
Abstract

Histologic slides of 22 soft tissue tumors (9 malignant fibrous histiocytoma, 8
fibrosarcoma, 2 rhabdomyosarcoma, 2 osteosarcoma, 1 Askin tumor) were Feulgen
stained. Using an automated image analyzing system (Cambridge 570) at low
magnification (25x), the tumor cell nuclei were segmented. The geometrical center of the
nuclei was considered the vertex. A basic graph was constructed according to the
neighborhood condition of O'Callaghan. Neighboring tumor cell nuclei were visualized by
connecting edges. Several features of tumor cell nuclei were measured, including area,
surface, major and minor axis of best fitting ellipsis and extinction (DNA content). Nuclear
features are attributed to the vertices. The differences, or "distances," between features of
connected vertices are attributed to the corresponding edges, which are dependent on the
attributes. Thus, different minimum spanning trees (MST) result. Each MST can be
decomposed into clusters using a suitable decomposition function on the edges, which
rejects an edge if its attributes differ from the mean of the attributed values of
surrounding edges more than a neighbor dependent bound (lower limit). Taking into
account the length and other attributes of edges (e.g., differences in orientation of the
major axis), clusters of different nuclear orientation can be detected. A cluster tree can be
constructed by defining the geometric center of a cluster as a new vertex, and by
computing the neighborhood of the cluster vertices. The result is an attributed MST
containing characteristic structural properties of the image (in cases of sarcomatous
tumors, local orientation of tumor cell nuclei and local DNA abnormalities).
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Anwendung: Identitatsverifikation

Neurocomputing

Volume 72, Issues 7-9, March 2009, Pages 1859-1869

ELSEVIER

Minimum spanning tree based one-class classifier
Piotr Juszczak @ & &, David M.J. Tax , Elzbieta Pe, kalska ®, Robert P.W. Duin @
B Show more

https://doi.org/10.1016/j.neucom. 2008.05.003 Get rights and content

Abstract

In the problem of one-class classification one of the classes, called the target class, has to be distinguished from all other possible objects.
These are considered as non-targets. The need for solving such a task arises in many practical applications, e.g. in machine fault detection,
face recognition, authorship verification, fraud recognition or person identification based on biometric data.

This paper proposes a new one-class classifier, the minimum spanning tree class descriptor (MST_CD). This classifier builds on the
structure of the minimum spanning tree constructed on the target training set only. The classification of test objects relies on their distances
to the closest edge of that tree, hence the proposed method is an ple of a distance-based one-class ier. Our experiments show
that the MST_CD performs especially well in case of small sample size problems and in high-dimensional spaces.
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Anwendung: Zellsegmentierung in Mikroskopiebildern

Optimal cut in minimum spanning trees for 3-D cell
nuclei segmentation

7

v A Abreu ; v F.-X. Frenois ; v/ S. Valitutti ; v P. Brousset ; v P. Denéfle ; v B. Naegel ; v C. Wemmert View All Authors
Author(s)
Abstract Authors Figures References Citations Keywords Metrics Media
Abstract:

In biology and pathology immunofluorescence microscopy approaches are leading techniques for deciphering of the molecular
mechanisms of cell activation and disease progression. Although several commercial softwares for image analysis are presently
in the market, available solutions do not allow a totally non subjective image analysis. There is therefore strong need for new
methods that could allow a completely non-subjective image analysis procedure including for thresholding and for choice of
the objects of interest. To address this need, we describe a fully automatic segmentation of cell nuclei in 3-D confocal
immunofluorescence images. The method merges segments of the image to fit with a nuclei model learned by a trained
random forest classifier. The merging procedure explores efficiently the fusion configurations space of an over-segmented
image by using minimum spanning trees of its region adjacency graph.

Published in: Image and Signal Processing and Analysis (ISPA), 2017 10th International Symposium on
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Anwendungen

m Netzwerkdesign

m z.B. Kommunikationsnetze, Stromnetze, hydraulische Netze
Segmentierung

m z.B. von Zellkernen in Mikroskopiebildern

m Cluster-Analyse
m z.B. von Zellkernen zur Krebsdiagnose

m Approximation schwieriger Graphenprobleme
m Steiner-Baume, Traveling Salesperson

Viele indirekte Anwendungen
m LDPC fehlerkorrigierende Codes
m Features fiir Gesichtsverifikation etc.
m Ethernetprotokoll zum Vermeiden von Zykeln beim
Broadcasting
m Partikelinteraktion in turbulenten Flissigkeitsstromungen



Generischer Algorithmus

00000000000

Generischer Algorithmus



Generischer Algorithmus
00000000000

Graphen: Ubersicht

Reprasentation

» Exploration
. | Problemdefinition
| Exploration:
R -
-_ Algorithmus
Kiirzeste von Kruskal
Pfade Algorithmus
Andere von Prim
| Graphenprobleme




Generischer Algorithmus
00®00000000

Schnitte in Graphen

Definition

Sei G = (V, E) ein ungerichteter Graph und V' C V.

Der von V'’ induzierte Schnitt S\ besteht aus allen Kanten aus E,
bei denen genau ein Endpunkt in V/ liegt.

* o
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Generische Schritte

m Drei Zustande von Kanten
m unbearbeitet
m akzeptiert
m abgelehnt
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Generische Schritte

m Drei Zustande von Kanten
m unbearbeitet
m akzeptiert
m abgelehnt
m Akzeptanzschritt:
m Waihle einen Schnitt S, der keine akzeptierte Kante enthalt.

m Akzeptiere eine unbearbeitete Kante in S
mit minimalem Gewicht.
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Generische Schritte

m Drei Zustande von Kanten
m unbearbeitet
m akzeptiert
m abgelehnt
m Akzeptanzschritt:
m Waihle einen Schnitt S, der keine akzeptierte Kante enthalt.
m Akzeptiere eine unbearbeitete Kante in S
mit minimalem Gewicht.
m Ablehnungsschritt:
m Wahle einen Zyklus Z, der keine abgelehnte Kante enthilt.
m Lehne eine unbearbeitete Kante in Z
mit maximalem Gewicht ab.
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Generischer Algorithmus

Eingabe: Zusammenhingender, ungerichteter Graph G = (V, E)
@ Setze alle Kanten auf unbearbeitet

@ Solange noch Kanten unbearbeitet sind:

m Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

© Die akzeptierten Kanten bilden einen MST.
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Generischer Algorithmus

Eingabe: Zusammenhingender, ungerichteter Graph G = (V, E)
@ Setze alle Kanten auf unbearbeitet

@ Solange noch Kanten unbearbeitet sind:

m Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

© Die akzeptierten Kanten bilden einen MST.

Greedy-Verfahren: Trifft lokal optimale Entscheidungen
Hier ist das immer auch eine global optimale Entscheidung
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Generischer Algorithmus: Vollstandigkeit

Jede Instanziierung des generischen Algorithmus terminiert. I

Beweisskizze

m Knoten bilden mit den akzeptierten Kanten einen Wald W.
m Betrachte unbearbeitete Kante e = {v, v’}

m Fall 1: Hinzufiigen von e zu W fiihrt zu Zyklus
— Ablehnungsschritt mit e moglich
(e ist einzige unbearbeitete Kante in Zyklus)
m Fall 2: Hinzufiigen von e zu W fiihrt nicht zu Zyklus
— Die Endpunkte von e liegen nicht in gleicher
Zusammenhangskomponente von W.
— Betrachte Knotenmenge V’, die v und alle
in W mit v verbundenen Knoten enthilt.
— Akzeptanzschritt mit von V'’ induziertem Schnitt mdglich
(von unbearbeiteter Kante mit minimalem Gewicht)
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Generischer Algorithmus: Korrektheit

Nach der Terminierung bilden die akzeptierten Kanten einen MST. I

Beweis
Induktion tiber die Anzahl der Schritte.

Induktionshypothese: Es gibt einen MST B, der
alle akzeptierten Kanten und keine abgelehnte Kante enthilt.

Induktionsanfang: Keine Kanten akzeptiert oder abgelehnt,
daher erfiillt jeder MST die Bedingung.
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Generischer Algorithmus: Korrektheit

Beweis (Fortsetzung).

Induktionsschritt:
Fall 1: Akzeptanzschritt

m Sei S der betrachtete Schnitt und e die akzeptierte Kante.
m Falls e in B, ist Ind.hypothese fiir B weiterhin erfiillt.

m Sonst erzeugt Hinzufiigen von e zu B Zyklus Z,
der eine weitere Kante €’ aus S enthilt.

m Kante €’ ist unbearbeitet:
nicht abgelehnt, da in B; nicht akzeptiert, da in S

m weight(e) < weight(e’), da e akzeptiert wurde

m Erzeuge B’ aus B durch Entfernen von Kante €’ und
Hinzufiigen von Kante e.

m B’ ist MST und erfiillt Ind.hypothese.
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Generischer Algorithmus: Korrektheit

Beweis (Fortsetzung).
Fall 2: Ablehnungsschritt

Sei Z der betrachtete Zyklus und e die abgelehnte Kante.
Falls e nicht in B, ist Ind.hypothese fiir B weiterhin erfiillt.

Sonst zerfillt B durch Entfernen von e in zwei
Zusammenhangskomponenten.

Betrachte Schnitt S zwischen den Komponenten.
S enthilt eine weitere Kante €’ aus Z.

Kante €’ ist unbearbeitet:
nicht abgelehnt, da in Z; nicht akzeptiert, da nicht in B

weight(e) > weight(e’), da e abgelehnt wurde.

Erzeuge B’ aus B durch Entfernen von Kante e und
Hinzufiigen von Kante e¢’: MST und erfiillt Ind.hypothese

]
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Generischer Algorithmus

Input: Zusammenhangender, ungerichteter Graph G = (V, E)
@ Setze alle Kanten auf unbearbeitet

@ Solange noch Kanten unbearbeitet sind:

m Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

© Die akzeptierten Kanten bilden einen MST.

Beobachtung

Wir kénnen nach |V| — 1 akzeptierten Kanten abbrechen.

Warum?
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Offene Fragen

m Wie wahlen wir geschickt die ndchste Kante
zum Akzeptieren oder Ablehnen?

m Algorithmus von Kruskal
m Algorithmus von Prim

m Vorher: Wie reprasentieren wir den gewichteten Graphen?
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Graphenreprasentation
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Reprasentation gewichteter Kanten

Erweiterung bisheriger Reprasentationen moglich
m Adjazenzmatrix: Gewicht statt bindrer Eintrige

m Konnen wir parallele Kanten unterstiitzen?

m Adjazenzliste: Paare von Nachfolger und Gewicht in Liste
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Reprasentation gewichteter Kanten

Erweiterung bisheriger Reprasentationen moglich
m Adjazenzmatrix: Gewicht statt bindrer Eintrige
m Konnen wir parallele Kanten unterstiitzen?

m Adjazenzliste: Paare von Nachfolger und Gewicht in Liste

Aber
m Generischer Algorithmus konzentriert sich auf Kanten

m Daher: Reprasentiere Kanten als Objekte
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API fiir gewichtete Kante

class Edge:
# Kante zwischen nl und n2 mit Gewicht w
def __init__(nl: int, n2: int, w: float) -> None

def weight() -> float

1

2

3

4

5 # Gewicht der Kante
6

7

8 # Einer der betden Knoten

9 def either_node() -> int

11 # Der andere Knoten (nicht n)
12 def other_node(int n) -> int
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Gewichtete Kante: Mogliche Implementierung

1 class Edge:

2 def __init__(self, nl, n2, weight):
3 self.nl = nl

4 self.n2 = n2

5 self.edge_weight = weight

6

7 def weight(self):

8 return self.edge_weight

9

10 def either_node(self):

return self.nl

= e e
w N

def other_node(self, n):
if self.nl == n:
return self.n2
return self.nl

= e e
o Ul
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Reprasentation gewichteter Graphen

Graphenreprasentation

m Wir wollen weiterhin schnell die an einem Knoten
anliegenden Kanten bestimmen kdnnen.

m Speichere fiir jeden Knoten Referenzen auf
die anliegenden Kanten.

m Bendtigen fiir jede Kante ein Objekt
und zwei Referenzen darauf.
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API fiir gewichtete Graphen

1 class EdgeWeightedGraph:

2 # Graph mit no_nodes Knoten und keinen Kanten
3 def __init__(no_nodes: int) -> None

4

5 # Fiuge gewichtete Kante hinzu

6 def add_edge(e: Edge) -> None

7

8 # Anzahl der Knoten

9 def no_nodes() -> int

10

11 # Anzahl der Kanten

12 def no_edges() -> int

13

14 # Alle an Knoten n anliegenden Kanten

15 def adjacent_edges(n: int) -> Generator[Edgel
16

17 # Alle Kanten

18 def all_edges() -> Generator [Edge]
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Gewichteter Graph: Mégliche Implementierung

1 class EdgeWeightedGraph:

2 def __init__(self, no_nodes):

3 self.nodes = no_nodes

4 self.edges = 0

5 self.adjacent= [[] for 1 in range(no_nodes)]
6

7 def add_edge(self, edge):

8 either = edge.either_node()

9 other = edge.other_node(either)

10 self.adjacent [either] .append(edge)
11 self .adjacent [other] . append (edge)
12 self.edges += 1

13

14 def no_nodes(self):

15 return self.nodes

16

17 def no_edges(self):

18 return self.edges
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Gewichteter Graph: Mdgliche Implementierung (Forts.)

19

20 def adjacent_edges(self, node):

21 for edge in self.adjacent_edges[node]:

22 yield edge

23

24 def all_edges(self):

25 for node in range(self.nodes):

26 for edge in self.adjacent_edges[node]:
27 if edge.other_node(node) > node:

28 yield edge
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API fiir MST-Implementierungen

Die Algorithmen fiir minimale Spannbdume sollen folgendes
Interface implementieren:

class MST:
# Konstruktor
def __init__(graph: EdgeWeightedGraph) -> None

def edges() -> Generator [Edge]

# Gewicht des minimalen Spannbaums

1
2
3
4
5 # Alle Kanten eines minimalen Spannbaums
6
7
8
9 def weight() -> float
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Kruskals Algorithmus
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Graphen: Ubersicht
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High-Level-Perspektive

Algorithmus von Kruskal

m Verarbeite Kanten in aufsteigender Reihenfolge ihrer Gewichte.

m Akzeptiere Kante, wenn sie mit bereits akzeptierten Kanten
keinen Zyklus bildet. Sonst lehne sie ab.

m Nach |V| — 1 akzeptierten Kanten fertig
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High-Level-Perspektive

Algorithmus von Kruskal

m Verarbeite Kanten in aufsteigender Reihenfolge ihrer Gewichte.

m Akzeptiere Kante, wenn sie mit bereits akzeptierten Kanten
keinen Zyklus bildet. Sonst lehne sie ab.

m Nach |V| — 1 akzeptierten Kanten fertig

Wieso ist das eine Instanziierung des generischen Algorithmus?
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rot: akzeptiert
abgelehnt
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rot: akzeptiert
abgelehnt
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rot: akzeptiert
abgelehnt
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rot: akzeptiert
abgelehnt
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rot: akzeptiert
abgelehnt



sentation Kruskals Algorithmus
000@000

rot: akzeptiert
abgelehnt
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rot: akzeptiert
abgelehnt
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rot: akzeptiert
abgelehnt
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rot: akzeptiert
abgelehnt
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[llustration

rot: akzeptiert
abgelehnt
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Algorithmus von Kruskal konzeptionell

Konzeptionelles Vorgehen

m Beginne mit Wald von |V/| Bdumen,
die jeweils nur aus einem Knoten bestehen.

m Jeder Akzeptanzschritt verbindet zwei Baume zu einem.
m Nach |V| — 1 Schritten besteht der Wald aus einem Baum.
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Algorithmus von Kruskal konzeptionell

Konzeptionelles Vorgehen

m Beginne mit Wald von |V/| Bdumen,
die jeweils nur aus einem Knoten bestehen.

m Jeder Akzeptanzschritt verbindet zwei Baume zu einem.
m Nach |V| — 1 Schritten besteht der Wald aus einem Baum.

m Wie konnen wir feststellen, ob eine Kante
zwei Baume miteinander verbindet oder
ob beide Endknoten im gleichen Baum liegen?

m Miissen wir die einzelnen Baume vollstandig reprasentieren?
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Algorithmus von Kruskal konzeptionell

Konzeptionelles Vorgehen

m Beginne mit Wald von |V/| Bdumen,
die jeweils nur aus einem Knoten bestehen.

m Jeder Akzeptanzschritt verbindet zwei Baume zu einem.
m Nach |V| — 1 Schritten besteht der Wald aus einem Baum.

m Wie konnen wir feststellen, ob eine Kante
zwei Baume miteinander verbindet oder
ob beide Endknoten im gleichen Baum liegen?

m Miissen wir die einzelnen Baume vollstandig reprasentieren?

— Uns interessieren nur die Zusammenhangskomponenten
— Union-Find zur Hilfe!
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Algorithmus von Kruskal: Implementierung

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue
6 for edge in graph.all_edges():

7 candidates.insert (edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):
12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v)

15 if uf.connected(v, w):

16 continue

17 uf .union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()
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Algorithmus von Kruskal: Implementierung

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue
6 for edge in graph.all_edges():

7 candidates.insert (edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):
12 edge = candidates.del_min()

13 v = edge.either_node() Wie sehen Methoden

14 w = edge.other_node(v)

15 if uf.connected(v, w): edges() und

16 continue weight () aus?

17 uf .union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()
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Algorithmus von Kruskal: Laufzeit

m Annahme: Heap-Implementierung der Priority-Queue
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Algorithmus von Kruskal: Laufzeit

m Annahme: Heap-Implementierung der Priority-Queue

m Initialisierung Priority-Queue mit allen Kanten: |E| Vergleiche
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Algorithmus von Kruskal: Laufzeit

m Annahme: Heap-Implementierung der Priority-Queue

m Initialisierung Priority-Queue mit allen Kanten: |E| Vergleiche
m Nie mehr als |E| Kanten in Priority-Queue
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Algorithmus von Kruskal: Laufzeit

m Annahme: Heap-Implementierung der Priority-Queue

m Initialisierung Priority-Queue mit allen Kanten: |E| Vergleiche
m Nie mehr als |E| Kanten in Priority-Queue
m Kosten pro Operation in O(log, |E|)
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Algorithmus von Kruskal: Laufzeit

m Annahme: Heap-Implementierung der Priority-Queue

m Initialisierung Priority-Queue mit allen Kanten: |E| Vergleiche
m Nie mehr als |E| Kanten in Priority-Queue

m Kosten pro Operation in O(log, |E|)
m Insgesamt Kosten fiir Priority-Queue-Operationen in
O(|E] log, |EY)
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Algorithmus von Kruskal: Laufzeit

m Annahme: Heap-Implementierung der Priority-Queue
m Initialisierung Priority-Queue mit allen Kanten: |E| Vergleiche

m Nie mehr als |E| Kanten in Priority-Queue

m Kosten pro Operation in O(log, |E|)
m Insgesamt Kosten fiir Priority-Queue-Operationen in
O(|E] log, |EY)

m Dominiert Kosten fiir Union-Find-Struktur

Insgesamt: Laufzeit in O(|E|log, |E|), Speicherbedarf in O(|E|)
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Prims Algorithmus
0®00000000000000

Graphen: Ubersicht

Reprasentation

—  Exploration
. - Problemdefinition
Exploration:
Anwendungen | Generisches
| Algorithmus
Kiirzeste von Kruskal
Andere

| Graphenprobleme




Prims Algorithmus

0000000000 000000

High-Level-Perspektive

Algorithmus von Prim

m Wahle einen zufilligen Knoten als initialen Baum.

m Lasse Baum schrittweise um eine weitere Kante wachsen

m Fiige jeweils Kante mit minimalem Gewicht hinzu,
die genau einen Endknoten im Baum hat.
— Akzeptanzschritt

m Fertig, wenn |V| — 1 Kanten hinzugefiigt.
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[llustration

Mit Startknoten 0

rot: akzeptiert
blau: potentielle nichste Kante
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Implementierung

Schwierigkeit

Finde die Kante mit minimalem Gewicht, die genau einen
Endpunkt im Baum hat.

m Priority Queue candidates, die Kanten nach Gewicht ordnet.
m Zwei Versionen:

m eager: nur Kanten, die exakt einen Endpunkt im Baum haben
m lazy: Kanten, die mindestens einen Endpunkt im Baum haben
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Hauptschleife Lazy-Version

Priority-Queue candidate

m enthdlt alle Kanten mit genau einem Endpunkt im Baum

m und moglicherweise Kanten mit beiden Endpunkten im Baum.
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Hauptschleife Lazy-Version

Priority-Queue candidate

m enthdlt alle Kanten mit genau einem Endpunkt im Baum

m und moglicherweise Kanten mit beiden Endpunkten im Baum.

Solange noch nicht | V| — 1 Kanten hinzugefiigt wurden:
m Nimm Kante e mit minimalen Kosten aus Priority-Queue
m Verwirf e, falls beide Endpunkte im Baum.

m Sonst sei v Endpunkt, der nicht im Baum ist

m Fiige alle an v anliegenden Kanten, deren anderer Endpunkt
nicht im Baum ist, zu candidates hinzu.
m Fiige e und v zum Baum hinzu.
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Lazy Prim-Algorithmus

class LazyPrim:
def __init__(self, graph):
self.included_edges = []
self.total_weight = 0

1
2
3
4
5
6 # node-indexzed list: True if node already in tree
7 included_nodes = [False] * graph.no_nodes()

8 candidates = minPQ()

9

10 # include an arbitrary node (we use 0) in tree

11 included_nodes[0] = True

12 for edge in graph.adjacent_edges(0):

13 candidates.insert (edge)
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Lazy Prim-Algorithmus (Forts.)

14
15 while (not candidates.empty() and

16 len(self.included_edges) < graph.no_nodes() - 1):
17 edge = candidates.del_min()

18 v = edge.either_node()

19 w = edge.other_node(v)

20 if included_nodes[v] and included_nodes[w]:

21 continue

22 if included_nodes[w]:

23 V, W=WwW, V

24 # v 1s in tree, w is not

25 included_nodes[w] = True

26 self.included_edges.append(edge)

27 self.total_weight += edge.weight()

28 for adjacent in graph.adjacent_edges(w):

29 if not included_nodes[adjacent.other_node(w)]:

30 candidates.insert(adjacent)
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Laufzeit und Speicherbedarf

Engpass ist Anzahl der Vergleiche von Kantengewichten in
Methoden insert und del_min der Priority-Queue.

Hoéchstens |E| Kanten in Priority-Queue

Einfiigen und Entfernen des Minimums jeweils in O(log|E|)

Hochstens |E| Einfiige- und |E| Lésch-Operationen
— Laufzeit O(|E|log |E|)

Speicherbedarf O(|E|)
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Eager-Version

Uberlegungen

m Wir konnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.
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Eager-Version

Uberlegungen
m Wir konnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

m Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, kdnnen nur die mit
minimalem Gewicht gewahlt werden.
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Uberlegungen

m Wir konnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

m Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, kdnnen nur die mit
minimalem Gewicht gewahlt werden.

m Es reicht, jeweils nur eine solche Kante zu betrachten.
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Eager-Version

Uberlegungen

m Wir konnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

m Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, kdnnen nur die mit
minimalem Gewicht gewahlt werden.

m Es reicht, jeweils nur eine solche Kante zu betrachten.

m Idee: Merke dir eine solche Kante fiir jeden Knoten
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Eager-Version

Uberlegungen

m Wir konnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

m Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, kdnnen nur die mit
minimalem Gewicht gewahlt werden.

m Es reicht, jeweils nur eine solche Kante zu betrachten.
m Idee: Merke dir eine solche Kante fiir jeden Knoten

m Priority-Queue enthidlt Knoten, wobei die Prioritdt das
Gewicht der gespeicherten Kante ist.
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Eager-Version

Uberlegungen

m Wir konnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

m Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, kdnnen nur die mit
minimalem Gewicht gewahlt werden.

m Es reicht, jeweils nur eine solche Kante zu betrachten.
m Idee: Merke dir eine solche Kante fiir jeden Knoten

m Priority-Queue enthidlt Knoten, wobei die Prioritdt das
Gewicht der gespeicherten Kante ist.

Problem: Wie kénnen wir giinstig die Priority-Queue updaten?
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Exkurs: Indizierte Vorrangwarteschlange

1 class IndexMinPQ:

2 # Figt key mit Prioritdt wval ein

3 def insert(entry: Object, val: int) -> None
4

5 # Entfernt Eintrag mit kleinster Prioritdt
6 # und liefert thn zurick

7 def del_min() -> Object

8

9 # Ist die Priority—Queue leer?

10 def empty() -> bool

11

12 # Ist Eintrag enthalten?

13 def contains(entry: Object) -> bool

14

15 # Andert Prioritit von entry auf wal

16 def change(entry: Object, val: int) -> None
17
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Exkurs: Indizierte Vorrangwarteschlange

Priority-Queue-Implementierung kann leicht erweitert werden.

Mit der heap-basierten Implementierung erhilt man dabei Laufzeit
m O(log n) fiir insert, change und del_min

m O(1) fiir contains und empty
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Eager Prim-Algorithmus: Datenstrukturen

Verwende nicht (indizierte) Priority-Queue von Kanten, sondern

m edge to: knotenindiziertes Array, das an Stelle v die Kante
(Edge) enthilt, die v (in Richtung des gewahlten
Startknotens) mit dem Baum verbindet bzw. das am
glinstigsten konnte.
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Eager Prim-Algorithmus: Datenstrukturen

Verwende nicht (indizierte) Priority-Queue von Kanten, sondern

m edge to: knotenindiziertes Array, das an Stelle v die Kante
(Edge) enthilt, die v (in Richtung des gewahlten
Startknotens) mit dem Baum verbindet bzw. das am
glinstigsten konnte.

m dist_to: Array, das an Stelle v das Gewicht
von Kante edge_to[v] enthilt.
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Eager Prim-Algorithmus: Datenstrukturen

Verwende nicht (indizierte) Priority-Queue von Kanten, sondern

m edge to: knotenindiziertes Array, das an Stelle v die Kante
(Edge) enthilt, die v (in Richtung des gewihlten
Startknotens) mit dem Baum verbindet bzw. das am
glinstigsten konnte.

m dist_to: Array, das an Stelle v das Gewicht
von Kante edge_to[v] enthilt.
m pq: indizierte Priority-Queue von Knoten

m Knoten noch nicht im Baum

m Konnen aber mit einer Kante mit dem bestehenden Baum
verbunden werden

m Sortiert nach Gewicht der giinstigsten solchen Kante
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Eager Prim-Algorithmus

1 class EagerPrim:

2 def __init__(self, graph):

3 self.edge_to = [None] * graph.no_nodes()

4 self.total_weight = 0

5 self.dist_to = [float('inf')] * graph.no_nodes()
6 self.included_nodes = [False] * graph.no_nodes()
7

8

9

self.pq = IndexMinPQ()

10 self.dist_to[0] = 0O
11 self.pq.insert (0, 0)
12 while not self.pq.empty():

13 self.visit(graph, self.pq.del_min())
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Eager Prim-Algorithmus (Forts.)

14
15 def visit(self, graph, v):

16 self.included_nodes[v] = True

17 for edge in graph.adjacent_edges(v):

18 w = edge.other_node(v)

19 if self.included_nodes [w]:

20 continue

21 if edge.weight() < self.dist_tol[w]:

22 # update cheapest edge between tree and w
23 self .edge_to[w] = edge

24 self .dist_to[w] = edge.weight()

25 if self.pq.contains(w):

26 self.pq.change(w, edge.weight())

27 else:

28 self.pq.insert(w, edge.weight())
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Laufzeit und Speicherbedarf

m Drei knotenindizierte Arrays
m Hochstens |V| Knoten in Priority-Queue
m Speicherbedarf O(|V])
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Laufzeit und Speicherbedarf

Drei knotenindizierte Arrays
Hochstens | V| Knoten in Priority-Queue
Speicherbedarf O(|V])

Priority-Queue: Bendtigen |V| Einfiigeoperationen,
|V| Operationen zum Entfernen des Minimums und
hochstens |E| Prioritatsanderungen
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Laufzeit und Speicherbedarf

Drei knotenindizierte Arrays
Hochstens | V| Knoten in Priority-Queue
Speicherbedarf O(|V])

Priority-Queue: Bendtigen |V| Einfiigeoperationen,
|V| Operationen zum Entfernen des Minimums und
hochstens |E| Prioritatsanderungen

Jeweils in Zeit O(log |V|) moglich
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Laufzeit und Speicherbedarf

Drei knotenindizierte Arrays
Hochstens | V| Knoten in Priority-Queue
Speicherbedarf O(|V])

Priority-Queue: Bendtigen |V| Einfiigeoperationen,
|V| Operationen zum Entfernen des Minimums und
hochstens |E| Prioritatsanderungen

Jeweils in Zeit O(log |V|) moglich
Laufzeit O(|E|log|V])
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Gibt es einen MST-Algorithmus mit linearer Laufzeit?

Algorithmus Speicher Zeit
Kruskal |E| |E|log |E|
Lazy-Prim |E| |E|log |E|
Eager-Prim V| |E|log | V|
Fredman-Tarjan V| |E| + |V|log | V|
Chazelle V| |E|a(]V]) (beinahe |E])
unmoglich? V| |E|?

Es gibt randomisiertes Verfahren mit linearen Zeitbedarf
(Erwartungswert) [Karger, Klein, Tarjan, 1995].
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