
Algorithmen und Datenstrukturen
C4. Minimale Spannbäume

Gabriele Röger

Universität Basel

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Minimale Spannbäume

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Problemdefinition

Generisches
Verfahren

Algorithmus
von Kruskal

Algorithmus
von Prim

Kürzeste
Pfade

Andere
Graphenprobleme

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Ungerichtete Graphen

In Kapitel C4 betrachten wir nur ungerichtete Graphen.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Bäume in ungerichteten Graphen

Definition

Ein Baum ist ein azyklischer, zusammenhängender Graph.
Eine disjunkte Menge von Bäumen wird Wald genannt.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eigenschaften von Bäumen

0

1

2

3

4

5

6

7

Für jeden Baum gilt:

Jedes Knotenpaar ist durch genau einen einfachen Pfad
verbunden (einfach = kein Knoten kommt zweimal vor).

Entfernt man eine Kante, zerfällt er zu einem Graphen
mit zwei Zusammenhangskomponenten.

Fügt man eine Kante hinzu, erzeugt man einen Zyklus.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Teilgraph

Definition

Graph G ′ = (V ′,E ′) ist ein Teilgraph von Graph G = (V ,E)
falls V ′ ⊆ V und E ′ ⊆ E .

0

1

2

3

5

6

7G ′

0

1

2

3

4

5

6

7G

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Spannbaum

Definition

Ein Spannbaum eines zusammenhängenden Graphen ist ein
Teilgraph, der alle Knoten des Graphen enthält und ein Baum ist.

Ein Spannwald eines (nicht zusammenhängenden) Graphen
ist die Vereinigung von je einem Spannbaum für jede
Zusammenhangskomponente zu einem Graphen.

0

1

2

3

4

5

6

7

Wie viele Kanten hat ein Spannbaum?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Spannbaum

Definition

Ein Spannbaum eines zusammenhängenden Graphen ist ein
Teilgraph, der alle Knoten des Graphen enthält und ein Baum ist.

Ein Spannwald eines (nicht zusammenhängenden) Graphen
ist die Vereinigung von je einem Spannbaum für jede
Zusammenhangskomponente zu einem Graphen.

0

1

2

3

4

5

6

7

Wie viele Kanten hat ein Spannbaum?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Gewichtete Graphen

Definition

Ein (kanten-)gewichteter Graph ordnet jeder Kante e ∈ E ein
Gewicht (oder Kosten) weight(e) aus den reellen Zahlen zu.

Das Gewicht des Graphen ist die Summe
∑

e∈E weight(e) der
Kantengewichte.

0

1

2

3

4

5

6

7

43.4

45

65.7

54.9

80
.3

86.1

52.2 59.4

73.9

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Minimale Spannbäume

Definition (Minimum-Spanning-Tree-Problem, MST-Problem)

Gegeben: Gewichteter, ungerichteter, zusammenhängender Graph
Gesucht: Spannbaum mit minimalem Gewicht

(es gibt keinen Spannbaum, bei dem die Summe
der Kantengewichte geringer ist).

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Anwendung: Clustering zur Tumorerkennung

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Anwendung: Identitätsverifikation

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Anwendung: Zellsegmentierung in Mikroskopiebildern

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Anwendungen

Netzwerkdesign

z.B. Kommunikationsnetze, Stromnetze, hydraulische Netze

Segmentierung

z.B. von Zellkernen in Mikroskopiebildern

Cluster-Analyse

z.B. von Zellkernen zur Krebsdiagnose

Approximation schwieriger Graphenprobleme

Steiner-Bäume, Traveling Salesperson

Viele indirekte Anwendungen

LDPC fehlerkorrigierende Codes
Features für Gesichtsverifikation etc.
Ethernetprotokoll zum Vermeiden von Zykeln beim
Broadcasting
Partikelinteraktion in turbulenten Flüssigkeitsströmungen

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generischer Algorithmus

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Problemdefinition

Generisches
Verfahren

Algorithmus
von Kruskal

Algorithmus
von Prim

Kürzeste
Pfade

Andere
Graphenprobleme

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Schnitte in Graphen

Definition

Sei G = (V ,E) ein ungerichteter Graph und V ′ ⊆ V .

Der von V ′ induzierte Schnitt SV ′ besteht aus allen Kanten aus E ,
bei denen genau ein Endpunkt in V ′ liegt.

0

1

2

3

4

5

6

7

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generische Schritte

Drei Zustände von Kanten

unbearbeitet
akzeptiert
abgelehnt

Akzeptanzschritt:

Wähle einen Schnitt S , der keine akzeptierte Kante enthält.
Akzeptiere eine unbearbeitete Kante in S
mit minimalem Gewicht.

Ablehnungsschritt:

Wähle einen Zyklus Z , der keine abgelehnte Kante enthält.
Lehne eine unbearbeitete Kante in Z
mit maximalem Gewicht ab.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generische Schritte

Drei Zustände von Kanten

unbearbeitet
akzeptiert
abgelehnt

Akzeptanzschritt:

Wähle einen Schnitt S , der keine akzeptierte Kante enthält.
Akzeptiere eine unbearbeitete Kante in S
mit minimalem Gewicht.

Ablehnungsschritt:

Wähle einen Zyklus Z , der keine abgelehnte Kante enthält.
Lehne eine unbearbeitete Kante in Z
mit maximalem Gewicht ab.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generische Schritte

Drei Zustände von Kanten

unbearbeitet
akzeptiert
abgelehnt

Akzeptanzschritt:

Wähle einen Schnitt S , der keine akzeptierte Kante enthält.
Akzeptiere eine unbearbeitete Kante in S
mit minimalem Gewicht.

Ablehnungsschritt:

Wähle einen Zyklus Z , der keine abgelehnte Kante enthält.
Lehne eine unbearbeitete Kante in Z
mit maximalem Gewicht ab.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generischer Algorithmus

Eingabe: Zusammenhängender, ungerichteter Graph G = (V ,E)

1 Setze alle Kanten auf unbearbeitet
2 Solange noch Kanten unbearbeitet sind:

Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

3 Die akzeptierten Kanten bilden einen MST.

Greedy-Verfahren: Trifft lokal optimale Entscheidungen
Hier ist das immer auch eine global optimale Entscheidung

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generischer Algorithmus

Eingabe: Zusammenhängender, ungerichteter Graph G = (V ,E)

1 Setze alle Kanten auf unbearbeitet
2 Solange noch Kanten unbearbeitet sind:

Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

3 Die akzeptierten Kanten bilden einen MST.

Greedy-Verfahren: Trifft lokal optimale Entscheidungen
Hier ist das immer auch eine global optimale Entscheidung

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generischer Algorithmus: Vollständigkeit

Theorem

Jede Instanziierung des generischen Algorithmus terminiert.

Beweisskizze

Knoten bilden mit den akzeptierten Kanten einen Wald W .

Betrachte unbearbeitete Kante e = {v , v ′}
Fall 1: Hinzufügen von e zu W führt zu Zyklus
→ Ablehnungsschritt mit e möglich
→(e ist einzige unbearbeitete Kante in Zyklus)
Fall 2: Hinzufügen von e zu W führt nicht zu Zyklus
→ Die Endpunkte von e liegen nicht in gleicher
→ Zusammenhangskomponente von W .
→ Betrachte Knotenmenge V ′, die v und alle
→ in W mit v verbundenen Knoten enthält.
→ Akzeptanzschritt mit von V ′ induziertem Schnitt möglich
→ (von unbearbeiteter Kante mit minimalem Gewicht)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generischer Algorithmus: Korrektheit

Theorem

Nach der Terminierung bilden die akzeptierten Kanten einen MST.

Beweis

Induktion über die Anzahl der Schritte.

Induktionshypothese: Es gibt einen MST B, der
alle akzeptierten Kanten und keine abgelehnte Kante enthält.

Induktionsanfang: Keine Kanten akzeptiert oder abgelehnt,
daher erfüllt jeder MST die Bedingung. . . .

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generischer Algorithmus: Korrektheit

Beweis (Fortsetzung).

Induktionsschritt:
Fall 1: Akzeptanzschritt

Sei S der betrachtete Schnitt und e die akzeptierte Kante.

Falls e in B, ist Ind.hypothese für B weiterhin erfüllt.

Sonst erzeugt Hinzufügen von e zu B Zyklus Z ,
der eine weitere Kante e ′ aus S enthält.

Kante e ′ ist unbearbeitet:
nicht abgelehnt, da in B; nicht akzeptiert, da in S

weight(e) ≤ weight(e ′), da e akzeptiert wurde

Erzeuge B ′ aus B durch Entfernen von Kante e ′ und
Hinzufügen von Kante e.

B ′ ist MST und erfüllt Ind.hypothese.

. . .

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generischer Algorithmus: Korrektheit

Beweis (Fortsetzung).

Fall 2: Ablehnungsschritt

Sei Z der betrachtete Zyklus und e die abgelehnte Kante.

Falls e nicht in B, ist Ind.hypothese für B weiterhin erfüllt.

Sonst zerfällt B durch Entfernen von e in zwei
Zusammenhangskomponenten.

Betrachte Schnitt S zwischen den Komponenten.

S enthält eine weitere Kante e ′ aus Z .

Kante e ′ ist unbearbeitet:
nicht abgelehnt, da in Z ; nicht akzeptiert, da nicht in B

weight(e) ≥ weight(e ′), da e abgelehnt wurde.

Erzeuge B ′ aus B durch Entfernen von Kante e und
Hinzufügen von Kante e ′: MST und erfüllt Ind.hypothese

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Generischer Algorithmus

Input: Zusammenhängender, ungerichteter Graph G = (V ,E)

1 Setze alle Kanten auf unbearbeitet
2 Solange noch Kanten unbearbeitet sind:

Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

3 Die akzeptierten Kanten bilden einen MST.

Beobachtung

Wir können nach |V | − 1 akzeptierten Kanten abbrechen.

Warum?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Offene Fragen

Wie wählen wir geschickt die nächste Kante
zum Akzeptieren oder Ablehnen?

Algorithmus von Kruskal
Algorithmus von Prim

Vorher: Wie repräsentieren wir den gewichteten Graphen?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Graphenrepräsentation

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Repräsentation gewichteter Kanten

Erweiterung bisheriger Repräsentationen möglich

Adjazenzmatrix: Gewicht statt binärer Einträge

Können wir parallele Kanten unterstützen?

Adjazenzliste: Paare von Nachfolger und Gewicht in Liste

Aber

Generischer Algorithmus konzentriert sich auf Kanten

Daher: Repräsentiere Kanten als Objekte

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Repräsentation gewichteter Kanten

Erweiterung bisheriger Repräsentationen möglich

Adjazenzmatrix: Gewicht statt binärer Einträge

Können wir parallele Kanten unterstützen?

Adjazenzliste: Paare von Nachfolger und Gewicht in Liste

Aber

Generischer Algorithmus konzentriert sich auf Kanten

Daher: Repräsentiere Kanten als Objekte

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

API für gewichtete Kante

1 class Edge:

2 # Kante zwischen n1 und n2 mit Gewicht w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # Gewicht der Kante

6 def weight() -> float

7

8 # Einer der beiden Knoten

9 def either_node() -> int

10

11 # Der andere Knoten (nicht n)

12 def other_node(int n) -> int

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Gewichtete Kante: Mögliche Implementierung

1 class Edge:

2 def __init__(self, n1, n2, weight):

3 self.n1 = n1

4 self.n2 = n2

5 self.edge_weight = weight

6

7 def weight(self):

8 return self.edge_weight

9

10 def either_node(self):

11 return self.n1

12

13 def other_node(self, n):

14 if self.n1 == n:

15 return self.n2

16 return self.n1

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Repräsentation gewichteter Graphen

Graphenrepräsentation

Wir wollen weiterhin schnell die an einem Knoten
anliegenden Kanten bestimmen können.

Speichere für jeden Knoten Referenzen auf
die anliegenden Kanten.

Benötigen für jede Kante ein Objekt
und zwei Referenzen darauf.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

API für gewichtete Graphen

1 class EdgeWeightedGraph:

2 # Graph mit no_nodes Knoten und keinen Kanten

3 def __init__(no_nodes: int) -> None

4

5 # Füge gewichtete Kante hinzu

6 def add_edge(e: Edge) -> None

7

8 # Anzahl der Knoten

9 def no_nodes() -> int

10

11 # Anzahl der Kanten

12 def no_edges() -> int

13

14 # Alle an Knoten n anliegenden Kanten

15 def adjacent_edges(n: int) -> Generator[Edge]

16

17 # Alle Kanten

18 def all_edges() -> Generator[Edge]

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Gewichteter Graph: Mögliche Implementierung

1 class EdgeWeightedGraph:

2 def __init__(self, no_nodes):

3 self.nodes = no_nodes

4 self.edges = 0

5 self.adjacent= [[] for l in range(no_nodes)]

6

7 def add_edge(self, edge):

8 either = edge.either_node()

9 other = edge.other_node(either)

10 self.adjacent[either].append(edge)

11 self.adjacent[other].append(edge)

12 self.edges += 1

13

14 def no_nodes(self):

15 return self.nodes

16

17 def no_edges(self):

18 return self.edges

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Gewichteter Graph: Mögliche Implementierung (Forts.)

19

20 def adjacent_edges(self, node):

21 for edge in self.adjacent_edges[node]:

22 yield edge

23

24 def all_edges(self):

25 for node in range(self.nodes):

26 for edge in self.adjacent_edges[node]:

27 if edge.other_node(node) > node:

28 yield edge

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

API für MST-Implementierungen

Die Algorithmen für minimale Spannbäume sollen folgendes
Interface implementieren:

1 class MST:

2 # Konstruktor

3 def __init__(graph: EdgeWeightedGraph) -> None

4

5 # Alle Kanten eines minimalen Spannbaums

6 def edges() -> Generator[Edge]

7

8 # Gewicht des minimalen Spannbaums

9 def weight() -> float

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Kruskals Algorithmus

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Problemdefinition

Generisches
Verfahren

Algorithmus
von Kruskal

Algorithmus
von Prim

Kürzeste
Pfade

Andere
Graphenprobleme

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

High-Level-Perspektive

Algorithmus von Kruskal

Verarbeite Kanten in aufsteigender Reihenfolge ihrer Gewichte.

Akzeptiere Kante, wenn sie mit bereits akzeptierten Kanten
keinen Zyklus bildet. Sonst lehne sie ab.

Nach |V | − 1 akzeptierten Kanten fertig

Wieso ist das eine Instanziierung des generischen Algorithmus?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

High-Level-Perspektive

Algorithmus von Kruskal

Verarbeite Kanten in aufsteigender Reihenfolge ihrer Gewichte.

Akzeptiere Kante, wenn sie mit bereits akzeptierten Kanten
keinen Zyklus bildet. Sonst lehne sie ab.

Nach |V | − 1 akzeptierten Kanten fertig

Wieso ist das eine Instanziierung des generischen Algorithmus?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal konzeptionell

Konzeptionelles Vorgehen

Beginne mit Wald von |V | Bäumen,
die jeweils nur aus einem Knoten bestehen.

Jeder Akzeptanzschritt verbindet zwei Bäume zu einem.

Nach |V | − 1 Schritten besteht der Wald aus einem Baum.

Fragen

Wie können wir feststellen, ob eine Kante
zwei Bäume miteinander verbindet oder
ob beide Endknoten im gleichen Baum liegen?

Müssen wir die einzelnen Bäume vollständig repräsentieren?

→ Uns interessieren nur die Zusammenhangskomponenten
→ Union-Find zur Hilfe!

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal konzeptionell

Konzeptionelles Vorgehen

Beginne mit Wald von |V | Bäumen,
die jeweils nur aus einem Knoten bestehen.

Jeder Akzeptanzschritt verbindet zwei Bäume zu einem.

Nach |V | − 1 Schritten besteht der Wald aus einem Baum.

Fragen

Wie können wir feststellen, ob eine Kante
zwei Bäume miteinander verbindet oder
ob beide Endknoten im gleichen Baum liegen?

Müssen wir die einzelnen Bäume vollständig repräsentieren?

→ Uns interessieren nur die Zusammenhangskomponenten
→ Union-Find zur Hilfe!

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal konzeptionell

Konzeptionelles Vorgehen

Beginne mit Wald von |V | Bäumen,
die jeweils nur aus einem Knoten bestehen.

Jeder Akzeptanzschritt verbindet zwei Bäume zu einem.

Nach |V | − 1 Schritten besteht der Wald aus einem Baum.

Fragen

Wie können wir feststellen, ob eine Kante
zwei Bäume miteinander verbindet oder
ob beide Endknoten im gleichen Baum liegen?

Müssen wir die einzelnen Bäume vollständig repräsentieren?

→ Uns interessieren nur die Zusammenhangskomponenten
→ Union-Find zur Hilfe!

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal: Implementierung

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue

6 for edge in graph.all_edges():

7 candidates.insert(edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):

12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v)

15 if uf.connected(v, w):

16 continue

17 uf.union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

Wie sehen Methoden
edges() und
weight() aus?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal: Implementierung

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue

6 for edge in graph.all_edges():

7 candidates.insert(edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):

12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v)

15 if uf.connected(v, w):

16 continue

17 uf.union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

Wie sehen Methoden
edges() und
weight() aus?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal: Laufzeit

Annahme: Heap-Implementierung der Priority-Queue

Initialisierung Priority-Queue mit allen Kanten: |E | Vergleiche

Nie mehr als |E | Kanten in Priority-Queue

Kosten pro Operation in O(log2 |E |)
Insgesamt Kosten für Priority-Queue-Operationen in
O(|E | log2 |E |)

Dominiert Kosten für Union-Find-Struktur

Insgesamt: Laufzeit in O(|E | log2 |E |), Speicherbedarf in O(|E |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal: Laufzeit

Annahme: Heap-Implementierung der Priority-Queue

Initialisierung Priority-Queue mit allen Kanten: |E | Vergleiche

Nie mehr als |E | Kanten in Priority-Queue

Kosten pro Operation in O(log2 |E |)
Insgesamt Kosten für Priority-Queue-Operationen in
O(|E | log2 |E |)

Dominiert Kosten für Union-Find-Struktur

Insgesamt: Laufzeit in O(|E | log2 |E |), Speicherbedarf in O(|E |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal: Laufzeit

Annahme: Heap-Implementierung der Priority-Queue

Initialisierung Priority-Queue mit allen Kanten: |E | Vergleiche

Nie mehr als |E | Kanten in Priority-Queue

Kosten pro Operation in O(log2 |E |)
Insgesamt Kosten für Priority-Queue-Operationen in
O(|E | log2 |E |)

Dominiert Kosten für Union-Find-Struktur

Insgesamt: Laufzeit in O(|E | log2 |E |), Speicherbedarf in O(|E |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal: Laufzeit

Annahme: Heap-Implementierung der Priority-Queue

Initialisierung Priority-Queue mit allen Kanten: |E | Vergleiche

Nie mehr als |E | Kanten in Priority-Queue

Kosten pro Operation in O(log2 |E |)
Insgesamt Kosten für Priority-Queue-Operationen in
O(|E | log2 |E |)

Dominiert Kosten für Union-Find-Struktur

Insgesamt: Laufzeit in O(|E | log2 |E |), Speicherbedarf in O(|E |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal: Laufzeit

Annahme: Heap-Implementierung der Priority-Queue

Initialisierung Priority-Queue mit allen Kanten: |E | Vergleiche

Nie mehr als |E | Kanten in Priority-Queue

Kosten pro Operation in O(log2 |E |)
Insgesamt Kosten für Priority-Queue-Operationen in
O(|E | log2 |E |)

Dominiert Kosten für Union-Find-Struktur

Insgesamt: Laufzeit in O(|E | log2 |E |), Speicherbedarf in O(|E |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Algorithmus von Kruskal: Laufzeit

Annahme: Heap-Implementierung der Priority-Queue

Initialisierung Priority-Queue mit allen Kanten: |E | Vergleiche

Nie mehr als |E | Kanten in Priority-Queue

Kosten pro Operation in O(log2 |E |)
Insgesamt Kosten für Priority-Queue-Operationen in
O(|E | log2 |E |)

Dominiert Kosten für Union-Find-Struktur

Insgesamt: Laufzeit in O(|E | log2 |E |), Speicherbedarf in O(|E |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Prims Algorithmus

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Problemdefinition

Generisches
Verfahren

Algorithmus
von Kruskal

Algorithmus
von Prim

Kürzeste
Pfade

Andere
Graphenprobleme

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

High-Level-Perspektive

Algorithmus von Prim

Wähle einen zufälligen Knoten als initialen Baum.

Lasse Baum schrittweise um eine weitere Kante wachsen

Füge jeweils Kante mit minimalem Gewicht hinzu,
die genau einen Endknoten im Baum hat.
→ Akzeptanzschritt

Fertig, wenn |V | − 1 Kanten hinzugefügt.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4

45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Implementierung

Schwierigkeit

Finde die Kante mit minimalem Gewicht, die genau einen
Endpunkt im Baum hat.

Priority Queue candidates, die Kanten nach Gewicht ordnet.

Zwei Versionen:

eager: nur Kanten, die exakt einen Endpunkt im Baum haben
lazy: Kanten, die mindestens einen Endpunkt im Baum haben

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Hauptschleife Lazy-Version

Invariante

Priority-Queue candidate

enthält alle Kanten mit genau einem Endpunkt im Baum

und möglicherweise Kanten mit beiden Endpunkten im Baum.

Solange noch nicht |V | − 1 Kanten hinzugefügt wurden:

Nimm Kante e mit minimalen Kosten aus Priority-Queue

Verwirf e, falls beide Endpunkte im Baum.

Sonst sei v Endpunkt, der nicht im Baum ist

Füge alle an v anliegenden Kanten, deren anderer Endpunkt
nicht im Baum ist, zu candidates hinzu.
Füge e und v zum Baum hinzu.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Hauptschleife Lazy-Version

Invariante

Priority-Queue candidate

enthält alle Kanten mit genau einem Endpunkt im Baum

und möglicherweise Kanten mit beiden Endpunkten im Baum.

Solange noch nicht |V | − 1 Kanten hinzugefügt wurden:

Nimm Kante e mit minimalen Kosten aus Priority-Queue

Verwirf e, falls beide Endpunkte im Baum.

Sonst sei v Endpunkt, der nicht im Baum ist

Füge alle an v anliegenden Kanten, deren anderer Endpunkt
nicht im Baum ist, zu candidates hinzu.
Füge e und v zum Baum hinzu.

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Lazy Prim-Algorithmus

1 class LazyPrim:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5

6 # node-indexed list: True if node already in tree

7 included_nodes = [False] * graph.no_nodes()

8 candidates = minPQ()

9

10 # include an arbitrary node (we use 0) in tree

11 included_nodes[0] = True

12 for edge in graph.adjacent_edges(0):

13 candidates.insert(edge)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Lazy Prim-Algorithmus (Forts.)

14

15 while (not candidates.empty() and

16 len(self.included_edges) < graph.no_nodes() - 1):

17 edge = candidates.del_min()

18 v = edge.either_node()

19 w = edge.other_node(v)

20 if included_nodes[v] and included_nodes[w]:

21 continue

22 if included_nodes[w]:

23 v, w = w, v

24 # v is in tree, w is not

25 included_nodes[w] = True

26 self.included_edges.append(edge)

27 self.total_weight += edge.weight()

28 for adjacent in graph.adjacent_edges(w):

29 if not included_nodes[adjacent.other_node(w)]:

30 candidates.insert(adjacent)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Laufzeit und Speicherbedarf

Engpass ist Anzahl der Vergleiche von Kantengewichten in
Methoden insert und del min der Priority-Queue.

Höchstens |E | Kanten in Priority-Queue

Einfügen und Entfernen des Minimums jeweils in O(log |E |)
Höchstens |E | Einfüge- und |E | Lösch-Operationen
→ Laufzeit O(|E | log |E |)
Speicherbedarf O(|E |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager-Version

Überlegungen

Wir könnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, können nur die mit
minimalem Gewicht gewählt werden.

Es reicht, jeweils nur eine solche Kante zu betrachten.

Idee: Merke dir eine solche Kante für jeden Knoten

Priority-Queue enthält Knoten, wobei die Priorität das
Gewicht der gespeicherten Kante ist.

Problem: Wie können wir günstig die Priority-Queue updaten?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager-Version

Überlegungen

Wir könnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, können nur die mit
minimalem Gewicht gewählt werden.

Es reicht, jeweils nur eine solche Kante zu betrachten.

Idee: Merke dir eine solche Kante für jeden Knoten

Priority-Queue enthält Knoten, wobei die Priorität das
Gewicht der gespeicherten Kante ist.

Problem: Wie können wir günstig die Priority-Queue updaten?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager-Version

Überlegungen

Wir könnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, können nur die mit
minimalem Gewicht gewählt werden.

Es reicht, jeweils nur eine solche Kante zu betrachten.

Idee: Merke dir eine solche Kante für jeden Knoten

Priority-Queue enthält Knoten, wobei die Priorität das
Gewicht der gespeicherten Kante ist.

Problem: Wie können wir günstig die Priority-Queue updaten?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager-Version

Überlegungen

Wir könnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, können nur die mit
minimalem Gewicht gewählt werden.

Es reicht, jeweils nur eine solche Kante zu betrachten.

Idee: Merke dir eine solche Kante für jeden Knoten

Priority-Queue enthält Knoten, wobei die Priorität das
Gewicht der gespeicherten Kante ist.

Problem: Wie können wir günstig die Priority-Queue updaten?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager-Version

Überlegungen

Wir könnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, können nur die mit
minimalem Gewicht gewählt werden.

Es reicht, jeweils nur eine solche Kante zu betrachten.

Idee: Merke dir eine solche Kante für jeden Knoten

Priority-Queue enthält Knoten, wobei die Priorität das
Gewicht der gespeicherten Kante ist.

Problem: Wie können wir günstig die Priority-Queue updaten?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager-Version

Überlegungen

Wir könnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, können nur die mit
minimalem Gewicht gewählt werden.

Es reicht, jeweils nur eine solche Kante zu betrachten.

Idee: Merke dir eine solche Kante für jeden Knoten

Priority-Queue enthält Knoten, wobei die Priorität das
Gewicht der gespeicherten Kante ist.

Problem: Wie können wir günstig die Priority-Queue updaten?

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Exkurs: Indizierte Vorrangwarteschlange

1 class IndexMinPQ:

2 # Fügt key mit Priorität val ein

3 def insert(entry: Object, val: int) -> None

4

5 # Entfernt Eintrag mit kleinster Priorität

6 # und liefert ihn zurück

7 def del_min() -> Object

8

9 # Ist die Priority-Queue leer?

10 def empty() -> bool

11

12 # Ist Eintrag enthalten?

13 def contains(entry: Object) -> bool

14

15 # Ändert Priorität von entry auf val

16 def change(entry: Object, val: int) -> None

17

18 ...

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Exkurs: Indizierte Vorrangwarteschlange

Priority-Queue-Implementierung kann leicht erweitert werden.

Mit der heap-basierten Implementierung erhält man dabei Laufzeit

O(log n) für insert, change und del min

O(1) für contains und empty

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager Prim-Algorithmus: Datenstrukturen

Verwende nicht (indizierte) Priority-Queue von Kanten, sondern

edge to: knotenindiziertes Array, das an Stelle v die Kante
(Edge) enthält, die v (in Richtung des gewählten
Startknotens) mit dem Baum verbindet bzw. das am
günstigsten könnte.

dist to: Array, das an Stelle v das Gewicht
von Kante edge to[v] enthält.

pq: indizierte Priority-Queue von Knoten

Knoten noch nicht im Baum
Können aber mit einer Kante mit dem bestehenden Baum
verbunden werden
Sortiert nach Gewicht der günstigsten solchen Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager Prim-Algorithmus: Datenstrukturen

Verwende nicht (indizierte) Priority-Queue von Kanten, sondern

edge to: knotenindiziertes Array, das an Stelle v die Kante
(Edge) enthält, die v (in Richtung des gewählten
Startknotens) mit dem Baum verbindet bzw. das am
günstigsten könnte.

dist to: Array, das an Stelle v das Gewicht
von Kante edge to[v] enthält.

pq: indizierte Priority-Queue von Knoten

Knoten noch nicht im Baum
Können aber mit einer Kante mit dem bestehenden Baum
verbunden werden
Sortiert nach Gewicht der günstigsten solchen Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager Prim-Algorithmus: Datenstrukturen

Verwende nicht (indizierte) Priority-Queue von Kanten, sondern

edge to: knotenindiziertes Array, das an Stelle v die Kante
(Edge) enthält, die v (in Richtung des gewählten
Startknotens) mit dem Baum verbindet bzw. das am
günstigsten könnte.

dist to: Array, das an Stelle v das Gewicht
von Kante edge to[v] enthält.

pq: indizierte Priority-Queue von Knoten

Knoten noch nicht im Baum
Können aber mit einer Kante mit dem bestehenden Baum
verbunden werden
Sortiert nach Gewicht der günstigsten solchen Kante

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager Prim-Algorithmus

1 class EagerPrim:

2 def __init__(self, graph):

3 self.edge_to = [None] * graph.no_nodes()

4 self.total_weight = 0

5 self.dist_to = [float('inf')] * graph.no_nodes()

6 self.included_nodes = [False] * graph.no_nodes()

7

8 self.pq = IndexMinPQ()

9

10 self.dist_to[0] = 0

11 self.pq.insert(0, 0)

12 while not self.pq.empty():

13 self.visit(graph, self.pq.del_min())

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Eager Prim-Algorithmus (Forts.)

14

15 def visit(self, graph, v):

16 self.included_nodes[v] = True

17 for edge in graph.adjacent_edges(v):

18 w = edge.other_node(v)

19 if self.included_nodes[w]:

20 continue

21 if edge.weight() < self.dist_to[w]:

22 # update cheapest edge between tree and w

23 self.edge_to[w] = edge

24 self.dist_to[w] = edge.weight()

25 if self.pq.contains(w):

26 self.pq.change(w, edge.weight())

27 else:

28 self.pq.insert(w, edge.weight())

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Laufzeit und Speicherbedarf

Drei knotenindizierte Arrays

Höchstens |V | Knoten in Priority-Queue

Speicherbedarf O(|V |)
Priority-Queue: Benötigen |V | Einfügeoperationen,
|V | Operationen zum Entfernen des Minimums und
höchstens |E | Prioritätsänderungen

Jeweils in Zeit O(log |V |) möglich

Laufzeit O(|E | log |V |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Laufzeit und Speicherbedarf

Drei knotenindizierte Arrays

Höchstens |V | Knoten in Priority-Queue

Speicherbedarf O(|V |)
Priority-Queue: Benötigen |V | Einfügeoperationen,
|V | Operationen zum Entfernen des Minimums und
höchstens |E | Prioritätsänderungen

Jeweils in Zeit O(log |V |) möglich

Laufzeit O(|E | log |V |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Laufzeit und Speicherbedarf

Drei knotenindizierte Arrays

Höchstens |V | Knoten in Priority-Queue

Speicherbedarf O(|V |)
Priority-Queue: Benötigen |V | Einfügeoperationen,
|V | Operationen zum Entfernen des Minimums und
höchstens |E | Prioritätsänderungen

Jeweils in Zeit O(log |V |) möglich

Laufzeit O(|E | log |V |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Laufzeit und Speicherbedarf

Drei knotenindizierte Arrays

Höchstens |V | Knoten in Priority-Queue

Speicherbedarf O(|V |)
Priority-Queue: Benötigen |V | Einfügeoperationen,
|V | Operationen zum Entfernen des Minimums und
höchstens |E | Prioritätsänderungen

Jeweils in Zeit O(log |V |) möglich

Laufzeit O(|E | log |V |)

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Ausblick

Minimale Spannbäume Generischer Algorithmus Graphenrepräsentation Kruskals Algorithmus Prims Algorithmus Ausblick

Gibt es einen MST-Algorithmus mit linearer Laufzeit?

Algorithmus Speicher Zeit

Kruskal |E | |E | log |E |
Lazy-Prim |E | |E | log |E |
Eager-Prim |V | |E | log |V |

Fredman-Tarjan |V | |E |+ |V | log |V |
Chazelle |V | |E |α(|V |) (beinahe |E |)

unmöglich? |V | |E |?

Es gibt randomisiertes Verfahren mit linearen Zeitbedarf
(Erwartungswert) [Karger, Klein, Tarjan, 1995].

	Minimale Spannbäume
	

	Generischer Algorithmus
	

	Graphenrepräsentation
	

	Kruskals Algorithmus
	

	Prims Algorithmus
	

	Ausblick
	

