Algorithmen und Datenstrukturen

C4. Minimale Spannbdume

Gabriele Roger

Universitat Basel

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 1/60

Algorithmen und Datenstrukturen

— C4. Minimale Spannbdume

C4.1 Minimale Spannbdaume
C4.2 Generischer Algorithmus
C4.3 Graphenreprasentation
C4.4 Kruskals Algorithmus
C4.5 Prims Algorithmus

C4.6 Ausblick

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2 /60

C4. Minimale Spannbidume Minimale Spannbdume

C4.1 Minimale Spannbiaume

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 3 /60

C4. Minimale Spannbdume

Graphen: Ubersicht

G. Réger (Universitiat Basel)

Reprasentation

Exploration

Minimale Spannbdume

Exploration: -

Anwendungen

Generisches

Algorithmen und Datenstrukturen

Verfahren
|| Algorithmus
Kiirzeste von Kruskal
Pfade | Algorithmus
Andere von Prim
| Graphenprobleme

4 /60

C4. Minimale Spannbidume Minimale Spannbdume

Ungerichtete Graphen

In Kapitel C4 betrachten wir nur ungerichtete Graphen.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 5 /60

C4. Minimale Spannbidume Minimale Spannbdume

Baume in ungerichteten Graphen

Definition
Ein Baum ist ein azyklischer, zusammenhangender Graph.
Eine disjunkte Menge von Baumen wird Wald genannt.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 6 /60

C4. Minimale Spannbidume Minimale Spannbdume

Eigenschaften von Baumen

Fiir jeden Baum gilt:

» Jedes Knotenpaar ist durch genau einen einfachen Pfad
verbunden (einfach = kein Knoten kommt zweimal vor).

» Entfernt man eine Kante, zerfillt er zu einem Graphen
mit zwei Zusammenhangskomponenten.

> Filigt man eine Kante hinzu, erzeugt man einen Zyklus.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 7 / 60

C4. Minimale Spannbidume Minimale Spannbdume

Teilgraph

Definition
Graph G’ = (V’, E’) ist ein Teilgraph von Graph G = (V, E)
falls V/ C V und E' C E.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 8 /60

C4. Minimale Spannbidume Minimale Spannbdume

Spannbaum

Definition
Ein Spannbaum eines zusammenh&ngenden Graphen ist ein

Teilgraph, der alle Knoten des Graphen enthilt und ein Baum ist.

Ein Spannwald eines (nicht zusammenhingenden) Graphen
ist die Vereinigung von je einem Spannbaum fiir jede
Zusammenhangskomponente zu einem Graphen.

Wie viele Kanten hat ein Spannbaum?

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

/60

C4. Minimale Spannbidume Minimale Spannbdume

Gewichtete Graphen

Definition
Ein (kanten-)gewichteter Graph ordnet jeder Kante e € E ein
Gewicht (oder Kosten) weight(e) aus den reellen Zahlen zu.

Das Gewicht des Graphen ist die Summe) _ . weight(e) der
Kantengewichte.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 10 / 60

C4. Minimale Spannbidume Minimale Spannbdume

Minimale Spannbaume

Definition (Minimum-Spanning-Tree-Problem, MST-Problem)

Gegeben: Gewichteter, ungerichteter, zusammenhangender Graph
Gesucht: Spannbaum mit minimalem Gewicht

(es gibt keinen Spannbaum, bei dem die Summe

der Kantengewichte geringer ist).

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11 / 60

C4. Minimale Spannbidume Minimale Spannbdume

Anwendung: Clustering zur Tumorerkennung

O Analysis of soft tissue tumors by an attributed minimum spanning

tree.
Kayser K', Sandau K, Bshm G, Kunze KD, Paul J

Analytical and Quantitative Cytology and Histology [01 Oct 1991, 13(5):329-334]
Abstract

Histologic slides of 22 soft tissue tumors (9 malignant fibrous histiocytoma, 8
fibrosarcoma, 2 rhabdomyosarcoma, 2 osteosarcoma, 1 Askin tumor) were Feulgen
stained. Using an automated image analyzing system (Cambridge 570) at low
magnification (25x), the tumor cell nuclei were segmented. The geometrical center of the
nuclei was considered the vertex. A basic graph was constructed according to the
neighborhood condition of O'Callaghan. Neighboring tumor cell nuclei were visualized by
connecting edges. Several features of tumor cell nuclei were measured, including area,
surface, major and minor axis of best fitting ellipsis and extinction (DNA content). Nuclear
features are attributed to the vertices. The differences, or "distances," between features of
connected vertices are attributed to the corresponding edges, which are dependent on the
attributes. Thus, different minimum spanning trees (MST) result. Each MST can be
decomposed into clusters using a suitable decomposition function on the edges, which
rejects an edge if its attributes differ from the mean of the attributed values of
surrounding edges more than a neighbor dependent bound (lower limit). Taking into
account the length and other attributes of edges (e.g., differences in orientation of the
major axis), clusters of different nuclear orientation can be detected. A cluster tree can be
constructed by defining the geometric center of a cluster as a new vertex, and by
computing the neighborhood of the cluster vertices. The result is an attributed MST
containing characteristic structural properties of the image (in cases of sarcomatous
tumors, local orientation of tumor cell nuclei and local DNA abnormalities).

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 12 / 60

C4. Minimale Spannbidume Minimale Spannbdume

Anwendung: Identitatsverifikation

Neurocomputing
Volume 72, Issues 7-9, March 2009, Pages 1859-1869

ELSEVIER

Minimum spanning tree based one-class classifier
Piotr Juszczak @ & &, David M.J. Tax 2, Elzbieta Pe kalska b, Robert P.W. Duin @
B Show more

https://doi.org/10.1016/j.neucom. 2008.05.003 Get rights and content

Abstract

In the problem of one-class classification one of the classes, called the target class, has to be distinguished from all other possible objects.
These are considered as non-targets. The need for solving such a task arises in many practical applications, e.g. in machine fault detection,
face recognition, authorship verification, fraud recognition or person identification based on biometric data.

This paper proposes a new one-class classifier, the minimum spanning tree class descriptor (MST_CD). This classifier builds on the
structure of the minimum spanning tree constructed on the target training set only. The classification of test objects relies on their distances
to the closest edge of that tree, hence the proposed method is an ple of a dist: based one-class ifier. Our i show
that the MST_CD performs especially well in case of small sample size problems and in high-dimensional spaces.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 13 / 60

C4. Minimale Spannbidume Minimale Spannbdume

Anwendung: Zellsegmentierung in Mikroskopiebildern

Optimal cut in minimum spanning trees for 3-D cell
nuclei segmentation

7

v A, Abreu ; v F-X. Frenois ; v . Valitutti ; v P. Brousset ; v P. Denéfle ; v B. Naegel ; v C. Wemmert View All Authors
Author(s)

Abstract Authors Figures References Citations Keywords Metrics Media

Abstract:

In biology and pathology immunofluorescence microscopy approaches are leading techniques for deciphering of the molecular
mechanisms of cell activation and disease progression. Although several commercial softwares for image analysis are presently
in the market, available solutions do not allow a totally non subjective image analysis. There is therefore strong need for new
methods that could allow a completely non-subjective image analysis procedure including for thresholding and for choice of
the objects of interest. To address this need, we describe a fully automatic segmentation of cell nuclei in 3-D confocal
immunofluorescence images. The method merges segments of the image to fit with a nuclei model learned by a trained
random forest classifier. The merging procedure explores efficiently the fusion configurations space of an over-segmented
image by using minimum spanning trees of its region adjacency graph.

Published in: Image and Signal Processing and Analysis (ISPA), 2017 10th International Symposium on

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 14 / 60

C4. Minimale Spannbidume Minimale Spannbdume

Anwendungen

» Netzwerkdesign
» z.B. Kommunikationsnetze, Stromnetze, hydraulische Netze
> Segmentierung
» z.B. von Zellkernen in Mikroskopiebildern
» Cluster-Analyse
» z.B. von Zellkernen zur Krebsdiagnose
» Approximation schwieriger Graphenprobleme
> Steiner-Baume, Traveling Salesperson
> Viele indirekte Anwendungen

» LDPC fehlerkorrigierende Codes

> Features fiir Gesichtsverifikation etc.

» Ethernetprotokoll zum Vermeiden von Zykeln beim
Broadcasting

Partikelinteraktion in turbulenten Fliissigkeitsstromungen

v

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 15 / 60

C4. Minimale Spannbidume Generischer Algorithmus

C4.2 Generischer Algorithmus

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 16 / 60

C4. Minimale Spannbidume Generischer Algorithmus

Graphen: Ubersicht

Reprasentation

— Exploration
. —| Problemdefinition
| Exploration:
Algorithmus
Kiirzeste von Kruskal
Pfade | Algorithmus
Andere von Prim
| Graphenprobleme

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 17 / 60

C4. Minimale Spannbidume Generischer Algorithmus

Schnitte in Graphen

Definition

Sei G = (V/, E) ein ungerichteter Graph und V/ C V.

Der von V'’ induzierte Schnitt Sy besteht aus allen Kanten aus E,
bei denen genau ein Endpunkt in V/ liegt.

* o7

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 18 / 60

C4. Minimale Spannbidume Generischer Algorithmus

Generische Schritte

» Drei Zustande von Kanten
» unbearbeitet
> akzeptiert
» abgelehnt
» Akzeptanzschritt:
» Waihle einen Schnitt S, der keine akzeptierte Kante enthalt.
> Akzeptiere eine unbearbeitete Kante in S
mit minimalem Gewicht.
» Ablehnungsschritt:
» Waibhle einen Zyklus Z, der keine abgelehnte Kante enthalt.
» Lehne eine unbearbeitete Kante in Z
mit maximalem Gewicht ab.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 19 / 60

C4. Minimale Spannbidume Generischer Algorithmus

Generischer Algorithmus

Eingabe: Zusammenhingender, ungerichteter Graph G = (V, E)

@ Setze alle Kanten auf unbearbeitet
@ Solange noch Kanten unbearbeitet sind:

» Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

© Die akzeptierten Kanten bilden einen MST.

Greedy-Verfahren: Trifft lokal optimale Entscheidungen
Hier ist das immer auch eine global optimale Entscheidung

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

20 / 60

C4. Minimale Spannbidume Generischer Algorithmus

Generischer Algorithmus: Vollstandigkeit

Theorem
Jede Instanziierung des generischen Algorithmus terminiert.

Beweisskizze
» Knoten bilden mit den akzeptierten Kanten einen Wald W.

» Betrachte unbearbeitete Kante e = {v, v/}

» Fall 1: Hinzufiigen von e zu W fiihrt zu Zyklus
— Ablehnungsschritt mit e moglich
(e ist einzige unbearbeitete Kante in Zyklus)
» Fall 2: Hinzufiigen von e zu W fiihrt nicht zu Zyklus
— Die Endpunkte von e liegen nicht in gleicher
Zusammenhangskomponente von W.
— Betrachte Knotenmenge V’, die v und alle
in W mit v verbundenen Knoten enthalt.
— Akzeptanzschritt mit von V’ induziertem Schnitt mdglich
(von unbearbeiteter Kante mit minimalem Gewicht)

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

21

60

C4. Minimale Spannbidume Generischer Algorithmus

Generischer Algorithmus: Korrektheit

Theorem
Nach der Terminierung bilden die akzeptierten Kanten einen MST.

Beweis
Induktion iiber die Anzahl der Schritte.

Induktionshypothese: Es gibt einen MST B, der
alle akzeptierten Kanten und keine abgelehnte Kante enthilt.

Induktionsanfang: Keine Kanten akzeptiert oder abgelehnt,
daher erfiillt jeder MST die Bedingung.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 22 / 60

C4. Minimale Spannbidume Generischer Algorithmus

Generischer Algorithmus: Korrektheit

Beweis (Fortsetzung).
Induktionsschritt:
Fall 1: Akzeptanzschritt

» Sei S der betrachtete Schnitt und e die akzeptierte Kante.
> Falls e in B, ist Ind.hypothese fiir B weiterhin erfiillt.

» Sonst erzeugt Hinzufiigen von e zu B Zyklus Z,
der eine weitere Kante €’ aus S enthilt.

> Kante €' ist unbearbeitet:
nicht abgelehnt, da in B; nicht akzeptiert, da in S

> weight(e) < weight(e’), da e akzeptiert wurde

» Erzeuge B’ aus B durch Entfernen von Kante ¢’ und
Hinzufiigen von Kante e.

» B’ ist MST und erfiillt Ind.hypothese.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 23 /60

C4. Minimale Spannbidume Generischer Algorithmus

Generischer Algorithmus: Korrektheit

Beweis (Fortsetzung).
Fall 2: Ablehnungsschritt

> Sei Z der betrachtete Zyklus und e die abgelehnte Kante.
» Falls e nicht in B, ist Ind.hypothese fiir B weiterhin erfiillt.

» Sonst zerféllt B durch Entfernen von e in zwei
Zusammenhangskomponenten.

» Betrachte Schnitt S zwischen den Komponenten.

v

S enthilt eine weitere Kante €’ aus Z.

> Kante €’ ist unbearbeitet:
nicht abgelehnt, da in Z; nicht akzeptiert, da nicht in B

> weight(e) > weight(e’), da e abgelehnt wurde.

» Erzeuge B’ aus B durch Entfernen von Kante e und
Hinzufiigen von Kante e’: MST und erfiillt Ind.hypothese

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 24 / 60

Generischer Algorithmus

C4. Minimale Spannbidume

Generischer Algorithmus

Input: Zusammenhangender, ungerichteter Graph G = (V, E)

@ Setze alle Kanten auf unbearbeitet

@ Solange noch Kanten unbearbeitet sind:
» Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

© Die akzeptierten Kanten bilden einen MST.

Beobachtung
Wir kénnen nach |V| — 1 akzeptierten Kanten abbrechen.

Warum?

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

25 /

60

C4. Minimale Spannbidume Generischer Algorithmus

Offene Fragen

P> Wie wahlen wir geschickt die ndchste Kante
zum Akzeptieren oder Ablehnen?

> Algorithmus von Kruskal
» Algorithmus von Prim

» Vorher: Wie reprasentieren wir den gewichteten Graphen?

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 26 / 60

C4. Minimale Spannbidume Graphenreprasentation

C4.3 Graphenreprasentation

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 27 / 60

C4. Minimale Spannbidume Graphenreprasentation

Reprasentation gewichteter Kanten

Erweiterung bisheriger Reprasentationen moglich
> Adjazenzmatrix: Gewicht statt bindrer Eintrige
» Koénnen wir parallele Kanten unterstiitzen?

> Adjazenzliste: Paare von Nachfolger und Gewicht in Liste

Aber
» Generischer Algorithmus konzentriert sich auf Kanten

» Daher: Reprasentiere Kanten als Objekte

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

28 /

60

C4. Minimale Spannbidume Graphenreprasentation

API fiir gewichtete Kante

class Edge:
Kante zwischen nl und n2 mit Gewicht w
def __init__(nl: int, n2: int, w: float) -> None

def weight() -> float

1

2

3

4

5 # Gewicht der Kante
6

7

8 # Einer der betden Knoten

9 def either_node() -> int

11 # Der andere Knoten (nicht n)
12 def other_node(int n) -> int

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 29 / 60

C4. Minimale Spannbidume

Gewichtete Kante: Mogliche Implementierung

© W N s W N

e e T T e = T
D Ut e W N = O

G. Réger (Universitat Basel)

Graphenreprasentation

class Edge:

def

def

def

def

__init__(self, nl, n2, weight):
self.nl = nil

self.n2 = n2

self.edge_weight = weight

weight (self):
return self.edge_weight

either_node(self):
return self.nl

other_node(self, n):

if self.nl == n:
return self.n2

return self.nl

Algorithmen und Datenstrukturen

30 / 60

C4. Minimale Spannbidume

Reprasentation gewichteter Graphen

Graphenreprésentation

Graphenreprasentation

> Wir wollen weiterhin schnell die an einem Knoten
anliegenden Kanten bestimmen kdnnen.

» Speichere fiir jeden Knoten Referenzen auf
die anliegenden Kanten.

> Bendtigen fiir jede Kante ein Objekt
und zwei Referenzen darauf.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 31 /60

C4. Minimale Spannbdume Graphenreprésentation

API fiir gewichtete Graphen

class EdgeWeightedGraph:

Graph mit no_nodes Knoten und keinen Kanten
def __init__(no_nodes: int) -> None

Fige gewichtete Kante hinzu
def add_edge(e: Edge) -> None

Anzahl der Knoten
def no_nodes() -> int

Anzahl der Kanten
def no_edges() -> int

Alle an Knoten n anliegenden Kanten
def adjacent_edges(n: int) -> Generator[Edgel

Alle Kanten
def all_edges() -> Generator [Edge]

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 32 /60

C4. Minimale Spannbidume

Gewichteter Graph: Mogliche Implementierung

© W N e W N

e e T e =
w N e W N = O

G. Réger (Universitat Basel)

Graphenreprésentation

def

def

def

def

class EdgeWeightedGraph:

__init__(self, no_nodes):
self .nodes = no_nodes
self.edges = O

self.adjacent= [[] for 1 in range(no_nodes)]

add_edge(self, edge):

either = edge.either_node()

other = edge.other_node(either)
self.adjacent [either] .append(edge)
self .adjacent [other] . append (edge)
self.edges += 1

no_nodes(self):
return self.nodes

no_edges(self):
return self.edges

Algorithmen und Datenstrukturen

33/

60

C4. Minimale Spannbidume

Gewichteter Graph: Mdgliche Implementierung (Forts.)

19
20
21
22
23
24
25
26
27
28

def adjacent_edges(self, node):
for edge in self.adjacent_edges[node]:
yield edge

def all_edges(self):
for node in range(self.nodes):
for edge in self.adjacent_edges[node]:
if edge.other_node(node) > node:
yield edge

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

Graphenreprasentation

34 / 60

C4. Minimale Spannbidume Graphenreprasentation

API fiir MST-Implementierungen

Die Algorithmen fiir minimale Spannb3ume sollen folgendes
Interface implementieren:

class MST:
Konstruktor
def __init__(graph: EdgeWeightedGraph) -> None

def edges() -> Generator [Edge]

Gewicht des minimalen Spannbaums

1
2
3
4
5 # Alle Kanten eines minimalen Spannbaums
6
7
8
9 def weight() -> float

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 35 / 60

C4. Minimale Spannbidume Kruskals Algorithmus

C4.4 Kruskals Algorithmus

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 36 / 60

C4. Minimale Spannbdume

Graphen: Ubersicht

G. Réger (Universitiat Basel)

Reprasentation

Exploration

Exploration:

Problemdefinition

Anwendungen

Generisches
Verfahren

Kiirzeste -

Pfade

| Graphenprobleme

Andere

Algorithmus
von Prim

Algorithmen und Datenstrukturen

Kruskals Algorithmus

37 / 60

C4. Minimale Spannbidume Kruskals Algorithmus

High-Level-Perspektive

Algorithmus von Kruskal
> Verarbeite Kanten in aufsteigender Reihenfolge ihrer Gewichte.

> Akzeptiere Kante, wenn sie mit bereits akzeptierten Kanten
keinen Zyklus bildet. Sonst lehne sie ab.

» Nach |V| — 1 akzeptierten Kanten fertig

Wieso ist das eine Instanziierung des generischen Algorithmus?

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 38 /

60

C4. Minimale Spannbidume Kruskals Algorithmus

[llustration

rot: akzeptiert
abgelehnt

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 39 / 60

C4. Minimale Spannbidume Kruskals Algorithmus

Algorithmus von Kruskal konzeptionell

Konzeptionelles Vorgehen
» Beginne mit Wald von |V/| Baumen,
die jeweils nur aus einem Knoten bestehen.

» Jeder Akzeptanzschritt verbindet zwei Baume zu einem.
» Nach |V| — 1 Schritten besteht der Wald aus einem Baum.

Fragen
> Wie konnen wir feststellen, ob eine Kante
zwei Baume miteinander verbindet oder
ob beide Endknoten im gleichen Baum liegen?

> Miissen wir die einzelnen Baume vollstandig reprasentieren?

— Uns interessieren nur die Zusammenhangskomponenten
— Union-Find zur Hilfe!

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

40

/60

C4. Minimale Spannbidume Kruskals Algorithmus

Algorithmus von Kruskal: Implementierung

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue
6 for edge in graph.all_edges():

7 candidates.insert (edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):
12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v) Wie sehen Methoden

15 if uf.connected(v, w): edges() und

10 C?ntlnue weight() aus?

17 uf .union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 41 / 60

C4. Minimale Spannbidume Kruskals Algorithmus

Algorithmus von Kruskal: Laufzeit

» Annahme: Heap-Implementierung der Priority-Queue
» Initialisierung Priority-Queue mit allen Kanten: |E| Vergleiche

» Nie mehr als |E| Kanten in Priority-Queue

> Kosten pro Operation in O(log, |E|)
> Insgesamt Kosten fiir Priority-Queue-Operationen in
O(|E| log, |EJ)

» Dominiert Kosten fiir Union-Find-Struktur

Insgesamt: Laufzeit in O(|E|log, |E

). Speicherbedarf in O(|E|)

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

42 / 60

C4. Minimale Spannbidume Prims Algorithmus

C4.5 Prims Algorithmus

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 43 / 60

C4. Minimale Spannbdume

Graphen: Ubersicht

G. Réger (Universitiat Basel)

Reprasentation

» Exploration
. —| Problemdefinition
Exploration:
ATET D | Generisches
|| Algorithmus
Kiirzeste von Kruskal

| Graphenprobleme

Algorithmen und Datenstrukturen

Andere

Prims Algorithmus

44 / 60

C4. Minimale Spannbidume Prims Algorithmus

High-Level-Perspektive

Algorithmus von Prim
» Wahle einen zufilligen Knoten als initialen Baum.

» Lasse Baum schrittweise um eine weitere Kante wachsen

> Fiige jeweils Kante mit minimalem Gewicht hinzu,
die genau einen Endknoten im Baum hat.
— Akzeptanzschritt

> Fertig, wenn |V| — 1 Kanten hinzugefiigt.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 45 / 60

C4. Minimale Spannbidume Prims Algorithmus

[llustration

Mit Startknoten 0

rot: akzeptiert
blau: potentielle nichste Kante

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 46 / 60

C4. Minimale Spannbidume Prims Algorithmus

Implementierung

Schwierigkeit
Finde die Kante mit minimalem Gewicht, die genau einen
Endpunkt im Baum hat.

» Priority Queue candidates, die Kanten nach Gewicht ordnet.
> Zwei Versionen:

P eager: nur Kanten, die exakt einen Endpunkt im Baum haben
» lazy: Kanten, die mindestens einen Endpunkt im Baum haben

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 47 / 60

C4. Minimale Spannbidume Prims Algorithmus

Hauptschleife Lazy-Version

Invariante
Priority-Queue candidate

P enthilt alle Kanten mit genau einem Endpunkt im Baum

» und moglicherweise Kanten mit beiden Endpunkten im Baum.

Solange noch nicht |V| — 1 Kanten hinzugefiigt wurden:
» Nimm Kante e mit minimalen Kosten aus Priority-Queue
> Verwirf e, falls beide Endpunkte im Baum.

» Sonst sei v Endpunkt, der nicht im Baum ist

» Fiige alle an v anliegenden Kanten, deren anderer Endpunkt
nicht im Baum ist, zu candidates hinzu.
> Fiige e und v zum Baum hinzu.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 48

60

C4. Minimale Spannbidume

Lazy Prim-Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12
13

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 49 / 60

def

class LazyPrim:

__init__(self, graph):
self.included_edges = []
self.total_weight = 0

node-indexzed list: True if node already in tree
included_nodes = [False] * graph.no_nodes()
candidates = minPQ()

include an arbitrary node (we use 0) in tree

included_nodes[0] = True

for edge in graph.adjacent_edges(0):
candidates.insert (edge)

Prims Algorithmus

C4. Minimale Spannbidume

Prims Algorithmus

Lazy Prim-Algorithmus (Forts.)

14
15 while (not candidates.empty() and

16 len(self.included_edges) < graph.no_nodes() - 1):
17 edge = candidates.del_min()

18 v = edge.either_node()

19 w = edge.other_node(v)

20 if included_nodes[v] and included_nodes[w]:

21 continue

22 if included_nodes[w]:

23 V, W=W, V

24 # v 1s in tree, w is not

25 included_nodes[w] = True

26 self.included_edges.append(edge)

27 self.total_weight += edge.weight()

28 for adjacent in graph.adjacent_edges(w):

29 if not included_nodes[adjacent.other_node(w)]:
30 candidates.insert(adjacent)

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

50 /

60

C4. Minimale Spannbidume

Laufzeit und Speicherbedarf

G. Roger

Engpass ist Anzahl der Vergleiche von Kantengewichten in
Methoden insert und del_min der Priority-Queue.

Hoéchstens |E| Kanten in Priority-Queue
Einfiigen und Entfernen des Minimums jeweils in O(log|E|)

Hochstens |E| Einfiige- und |E| Lésch-Operationen
— Laufzeit O(|E|log|E|)

Speicherbedarf O(|E|)

(Universitit Basel) Algorithmen und Datenstrukturen

Prims Algorithmus

51 / 60

C4. Minimale Spannbidume Prims Algorithmus

Eager-Version

Uberlegungen
> Wir kdnnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.
> Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, kdnnen nur die mit
minimalem Gewicht gewahlt werden.

» Es reicht, jeweils nur eine solche Kante zu betrachten.

v

Idee: Merke dir eine solche Kante fiir jeden Knoten

» Priority-Queue enthilt Knoten, wobei die Prioritdt das
Gewicht der gespeicherten Kante ist.

Problem: Wie kénnen wir giinstig die Priority-Queue updaten?

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

1

60

C4. Minimale Spannbidume Prims Algorithmus

Exkurs: Indizierte Vorrangwarteschlange

class IndexMinPQ:

Figt key mit Prioritat val ein
def insert(entry: Object, val: int) -> Nomne

Entfernt Eintrag mit kleinster Prioritdt
und liefert thn zurick
def del_min() -> Object

Ist die Priority-Queue leer?
def empty() -> bool

Ist Eintrag enthalten?
def contains(entry: Object) -> bool

Andert Prioritit von entry auf wal
def change(entry: Object, val: int) -> None

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 53 / 60

C4. Minimale Spannbidume Prims Algorithmus

Exkurs: Indizierte Vorrangwarteschlange

Priority-Queue-Implementierung kann leicht erweitert werden.

Mit der heap-basierten Implementierung erhilt man dabei Laufzeit
» O(log n) fiir insert, change und del_min
» O(1) fiir contains und empty

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

54 / 60

C4. Minimale Spannbidume Prims Algorithmus

Eager Prim-Algorithmus: Datenstrukturen

Verwende nicht (indizierte) Priority-Queue von Kanten, sondern

> edge_to: knotenindiziertes Array, das an Stelle v die Kante
(Edge) enthilt, die v (in Richtung des gewihlten
Startknotens) mit dem Baum verbindet bzw. das am
glinstigsten konnte.

> dist_to: Array, das an Stelle v das Gewicht
von Kante edge _to[v] enthilt.
» pq: indizierte Priority-Queue von Knoten

» Knoten noch nicht im Baum

» Konnen aber mit einer Kante mit dem bestehenden Baum
verbunden werden

> Sortiert nach Gewicht der giinstigsten solchen Kante

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 55 / 60

C4. Minimale Spannbidume

Eager Prim-Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12
13

G. Réger (Universitat Basel)

Prims Algorithmus

class EagerPrim:

def

__init__(self, graph):

self.edge_to = [None] * graph.no_nodes()
self.total_weight = 0

self .dist_to = [float('inf')] * graph.no_nodes()
self.included_nodes = [False] * graph.no_nodes()

self.pq = IndexMinPQ()
self.dist_to[0] = 0
self.pq.insert (0, 0)

while not self.pq.empty():
self.visit(graph, self.pq.del_min())

Algorithmen und Datenstrukturen

56 /

60

C4. Minimale Spannbidume

Eager Prim-Algorithmus (Forts.)

14
15 def visit(self, graph, v):

16 self.included_nodes[v] = True

17 for edge in graph.adjacent_edges(v):

18 w = edge.other_node(v)

19 if self.included_nodes[w]:

20 continue

21 if edge.weight() < self.dist_tol[w]:

22 # update cheapest edge between tree and w
23 self .edge_to[w] = edge

24 self.dist_to[w] = edge.weight()

25 if self.pq.contains(w):

26 self.pq.change(w, edge.weight())

27 else:

28 self.pq.insert(w, edge.weight())

Prims Algorithmus

G. Réger (Universitat Basel)

Algorithmen und Datenstrukturen

57 /

60

C4. Minimale Spannbidume

Laufzeit und Speicherbedarf

vvyyypy

v

G. Roger

Drei knotenindizierte Arrays
Héchstens | V| Knoten in Priority-Queue
Speicherbedarf O(|V])

Priority-Queue: Bendtigen |V| Einfiigeoperationen,
|V| Operationen zum Entfernen des Minimums und
hochstens |E| Prioritatsanderungen

Jeweils in Zeit O(log |V|) moglich
Laufzeit O(|E|log|V])

(Universitit Basel) Algorithmen und Datenstrukturen

Prims Algorithmus

58 / 60

C4. Minimale Spannbdume Ausblick

C4.6 Ausblick

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 59 / 60

C4. Minimale Spannbidume Ausblick

Gibt es einen MST-Algorithmus mit linearer Laufzeit?

Algorithmus Speicher Zeit
Kruskal |E| |E|log |E]
Lazy-Prim |E| |E|log |E|
Eager-Prim V| |E|log | V|
Fredman-Tarjan 4 |E| + |V|log | V|
Chazelle V| |E|a(]V]) (beinahe |E])
unmoglich? V| |E|?

Es gibt randomisiertes Verfahren mit linearen Zeitbedarf
(Erwartungswert) [Karger, Klein, Tarjan, 1995].

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 60 /

60

	Minimale Spannbäume
	

	Generischer Algorithmus
	

	Graphenrepräsentation
	

	Kruskals Algorithmus
	

	Prims Algorithmus
	

	Ausblick
	

