
Algorithmen und Datenstrukturen
C4. Minimale Spannbäume

Gabriele Röger

Universität Basel

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 60

Algorithmen und Datenstrukturen
— C4. Minimale Spannbäume

C4.1 Minimale Spannbäume

C4.2 Generischer Algorithmus

C4.3 Graphenrepräsentation

C4.4 Kruskals Algorithmus

C4.5 Prims Algorithmus

C4.6 Ausblick

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 60

C4. Minimale Spannbäume Minimale Spannbäume

C4.1 Minimale Spannbäume

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Problemdefinition

Generisches
Verfahren

Algorithmus
von Kruskal

Algorithmus
von Prim

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Ungerichtete Graphen

In Kapitel C4 betrachten wir nur ungerichtete Graphen.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Bäume in ungerichteten Graphen

Definition
Ein Baum ist ein azyklischer, zusammenhängender Graph.
Eine disjunkte Menge von Bäumen wird Wald genannt.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Eigenschaften von Bäumen

0

1

2

3

4

5

6

7

Für jeden Baum gilt:

I Jedes Knotenpaar ist durch genau einen einfachen Pfad
verbunden (einfach = kein Knoten kommt zweimal vor).

I Entfernt man eine Kante, zerfällt er zu einem Graphen
mit zwei Zusammenhangskomponenten.

I Fügt man eine Kante hinzu, erzeugt man einen Zyklus.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Teilgraph

Definition

Graph G ′ = (V ′,E ′) ist ein Teilgraph von Graph G = (V ,E)
falls V ′ ⊆ V und E ′ ⊆ E .

0

1

2

3

5

6

7G ′

0

1

2

3

4

5

6

7G

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Spannbaum

Definition
Ein Spannbaum eines zusammenhängenden Graphen ist ein
Teilgraph, der alle Knoten des Graphen enthält und ein Baum ist.

Ein Spannwald eines (nicht zusammenhängenden) Graphen
ist die Vereinigung von je einem Spannbaum für jede
Zusammenhangskomponente zu einem Graphen.

0

1

2

3

4

5

6

7

Wie viele Kanten hat ein Spannbaum?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Gewichtete Graphen

Definition

Ein (kanten-)gewichteter Graph ordnet jeder Kante e ∈ E ein
Gewicht (oder Kosten) weight(e) aus den reellen Zahlen zu.

Das Gewicht des Graphen ist die Summe
∑

e∈E weight(e) der
Kantengewichte.

0

1

2

3

4

5

6

7

43.4

45

65.7

54.9

80
.3

86.1

52.2 59.4

73.9

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Minimale Spannbäume

Definition (Minimum-Spanning-Tree-Problem, MST-Problem)

Gegeben: Gewichteter, ungerichteter, zusammenhängender Graph
Gesucht: Spannbaum mit minimalem Gewicht

(es gibt keinen Spannbaum, bei dem die Summe
der Kantengewichte geringer ist).

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Anwendung: Clustering zur Tumorerkennung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Anwendung: Identitätsverifikation

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Anwendung: Zellsegmentierung in Mikroskopiebildern

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 60

C4. Minimale Spannbäume Minimale Spannbäume

Anwendungen

I Netzwerkdesign
I z.B. Kommunikationsnetze, Stromnetze, hydraulische Netze

I Segmentierung
I z.B. von Zellkernen in Mikroskopiebildern

I Cluster-Analyse
I z.B. von Zellkernen zur Krebsdiagnose

I Approximation schwieriger Graphenprobleme
I Steiner-Bäume, Traveling Salesperson

I Viele indirekte Anwendungen
I LDPC fehlerkorrigierende Codes
I Features für Gesichtsverifikation etc.
I Ethernetprotokoll zum Vermeiden von Zykeln beim

Broadcasting
I Partikelinteraktion in turbulenten Flüssigkeitsströmungen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 60

C4. Minimale Spannbäume Generischer Algorithmus

C4.2 Generischer Algorithmus

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Problemdefinition

Generisches
Verfahren

Algorithmus
von Kruskal

Algorithmus
von Prim

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Schnitte in Graphen

Definition

Sei G = (V ,E) ein ungerichteter Graph und V ′ ⊆ V .

Der von V ′ induzierte Schnitt SV ′ besteht aus allen Kanten aus E ,
bei denen genau ein Endpunkt in V ′ liegt.

0

1

2

3

4

5

6

7

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Generische Schritte

I Drei Zustände von Kanten
I unbearbeitet
I akzeptiert
I abgelehnt

I Akzeptanzschritt:
I Wähle einen Schnitt S , der keine akzeptierte Kante enthält.
I Akzeptiere eine unbearbeitete Kante in S

mit minimalem Gewicht.

I Ablehnungsschritt:
I Wähle einen Zyklus Z , der keine abgelehnte Kante enthält.
I Lehne eine unbearbeitete Kante in Z

mit maximalem Gewicht ab.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Generischer Algorithmus

Eingabe: Zusammenhängender, ungerichteter Graph G = (V ,E)

1 Setze alle Kanten auf unbearbeitet
2 Solange noch Kanten unbearbeitet sind:

I Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

3 Die akzeptierten Kanten bilden einen MST.

Greedy-Verfahren: Trifft lokal optimale Entscheidungen
Hier ist das immer auch eine global optimale Entscheidung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Generischer Algorithmus: Vollständigkeit

Theorem
Jede Instanziierung des generischen Algorithmus terminiert.

Beweisskizze
I Knoten bilden mit den akzeptierten Kanten einen Wald W .
I Betrachte unbearbeitete Kante e = {v , v ′}

I Fall 1: Hinzufügen von e zu W führt zu Zyklus
→ Ablehnungsschritt mit e möglich
→(e ist einzige unbearbeitete Kante in Zyklus)

I Fall 2: Hinzufügen von e zu W führt nicht zu Zyklus
→ Die Endpunkte von e liegen nicht in gleicher
→ Zusammenhangskomponente von W .
→ Betrachte Knotenmenge V ′, die v und alle
→ in W mit v verbundenen Knoten enthält.
→ Akzeptanzschritt mit von V ′ induziertem Schnitt möglich
→ (von unbearbeiteter Kante mit minimalem Gewicht)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Generischer Algorithmus: Korrektheit

Theorem
Nach der Terminierung bilden die akzeptierten Kanten einen MST.

Beweis
Induktion über die Anzahl der Schritte.

Induktionshypothese: Es gibt einen MST B, der
alle akzeptierten Kanten und keine abgelehnte Kante enthält.

Induktionsanfang: Keine Kanten akzeptiert oder abgelehnt,
daher erfüllt jeder MST die Bedingung. . . .

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Generischer Algorithmus: Korrektheit

Beweis (Fortsetzung).

Induktionsschritt:
Fall 1: Akzeptanzschritt

I Sei S der betrachtete Schnitt und e die akzeptierte Kante.

I Falls e in B, ist Ind.hypothese für B weiterhin erfüllt.

I Sonst erzeugt Hinzufügen von e zu B Zyklus Z ,
der eine weitere Kante e ′ aus S enthält.

I Kante e ′ ist unbearbeitet:
nicht abgelehnt, da in B; nicht akzeptiert, da in S

I weight(e) ≤ weight(e ′), da e akzeptiert wurde

I Erzeuge B ′ aus B durch Entfernen von Kante e ′ und
Hinzufügen von Kante e.

I B ′ ist MST und erfüllt Ind.hypothese.

. . .

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Generischer Algorithmus: Korrektheit

Beweis (Fortsetzung).

Fall 2: Ablehnungsschritt

I Sei Z der betrachtete Zyklus und e die abgelehnte Kante.

I Falls e nicht in B, ist Ind.hypothese für B weiterhin erfüllt.

I Sonst zerfällt B durch Entfernen von e in zwei
Zusammenhangskomponenten.

I Betrachte Schnitt S zwischen den Komponenten.

I S enthält eine weitere Kante e ′ aus Z .

I Kante e ′ ist unbearbeitet:
nicht abgelehnt, da in Z ; nicht akzeptiert, da nicht in B

I weight(e) ≥ weight(e ′), da e abgelehnt wurde.

I Erzeuge B ′ aus B durch Entfernen von Kante e und
Hinzufügen von Kante e ′: MST und erfüllt Ind.hypothese

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Generischer Algorithmus

Input: Zusammenhängender, ungerichteter Graph G = (V ,E)

1 Setze alle Kanten auf unbearbeitet
2 Solange noch Kanten unbearbeitet sind:

I Wende nicht-deterministisch einen Akzeptanz- oder
Ablehnungsschritt an.

3 Die akzeptierten Kanten bilden einen MST.

Beobachtung

Wir können nach |V | − 1 akzeptierten Kanten abbrechen.

Warum?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 25 / 60

C4. Minimale Spannbäume Generischer Algorithmus

Offene Fragen

I Wie wählen wir geschickt die nächste Kante
zum Akzeptieren oder Ablehnen?
I Algorithmus von Kruskal
I Algorithmus von Prim

I Vorher: Wie repräsentieren wir den gewichteten Graphen?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26 / 60

C4. Minimale Spannbäume Graphenrepräsentation

C4.3 Graphenrepräsentation

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27 / 60

C4. Minimale Spannbäume Graphenrepräsentation

Repräsentation gewichteter Kanten

Erweiterung bisheriger Repräsentationen möglich
I Adjazenzmatrix: Gewicht statt binärer Einträge

I Können wir parallele Kanten unterstützen?

I Adjazenzliste: Paare von Nachfolger und Gewicht in Liste

Aber

I Generischer Algorithmus konzentriert sich auf Kanten

I Daher: Repräsentiere Kanten als Objekte

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28 / 60

C4. Minimale Spannbäume Graphenrepräsentation

API für gewichtete Kante

1 class Edge:

2 # Kante zwischen n1 und n2 mit Gewicht w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # Gewicht der Kante

6 def weight() -> float

7

8 # Einer der beiden Knoten

9 def either_node() -> int

10

11 # Der andere Knoten (nicht n)

12 def other_node(int n) -> int

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 29 / 60

C4. Minimale Spannbäume Graphenrepräsentation

Gewichtete Kante: Mögliche Implementierung

1 class Edge:

2 def __init__(self, n1, n2, weight):

3 self.n1 = n1

4 self.n2 = n2

5 self.edge_weight = weight

6

7 def weight(self):

8 return self.edge_weight

9

10 def either_node(self):

11 return self.n1

12

13 def other_node(self, n):

14 if self.n1 == n:

15 return self.n2

16 return self.n1

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 30 / 60

C4. Minimale Spannbäume Graphenrepräsentation

Repräsentation gewichteter Graphen

Graphenrepräsentation

I Wir wollen weiterhin schnell die an einem Knoten
anliegenden Kanten bestimmen können.

I Speichere für jeden Knoten Referenzen auf
die anliegenden Kanten.

I Benötigen für jede Kante ein Objekt
und zwei Referenzen darauf.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 31 / 60

C4. Minimale Spannbäume Graphenrepräsentation

API für gewichtete Graphen

1 class EdgeWeightedGraph:

2 # Graph mit no_nodes Knoten und keinen Kanten

3 def __init__(no_nodes: int) -> None

4

5 # Füge gewichtete Kante hinzu

6 def add_edge(e: Edge) -> None

7

8 # Anzahl der Knoten

9 def no_nodes() -> int

10

11 # Anzahl der Kanten

12 def no_edges() -> int

13

14 # Alle an Knoten n anliegenden Kanten

15 def adjacent_edges(n: int) -> Generator[Edge]

16

17 # Alle Kanten

18 def all_edges() -> Generator[Edge]

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 32 / 60

C4. Minimale Spannbäume Graphenrepräsentation

Gewichteter Graph: Mögliche Implementierung

1 class EdgeWeightedGraph:

2 def __init__(self, no_nodes):

3 self.nodes = no_nodes

4 self.edges = 0

5 self.adjacent= [[] for l in range(no_nodes)]

6

7 def add_edge(self, edge):

8 either = edge.either_node()

9 other = edge.other_node(either)

10 self.adjacent[either].append(edge)

11 self.adjacent[other].append(edge)

12 self.edges += 1

13

14 def no_nodes(self):

15 return self.nodes

16

17 def no_edges(self):

18 return self.edges

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 33 / 60

C4. Minimale Spannbäume Graphenrepräsentation

Gewichteter Graph: Mögliche Implementierung (Forts.)

19

20 def adjacent_edges(self, node):

21 for edge in self.adjacent_edges[node]:

22 yield edge

23

24 def all_edges(self):

25 for node in range(self.nodes):

26 for edge in self.adjacent_edges[node]:

27 if edge.other_node(node) > node:

28 yield edge

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 34 / 60

C4. Minimale Spannbäume Graphenrepräsentation

API für MST-Implementierungen

Die Algorithmen für minimale Spannbäume sollen folgendes
Interface implementieren:

1 class MST:

2 # Konstruktor

3 def __init__(graph: EdgeWeightedGraph) -> None

4

5 # Alle Kanten eines minimalen Spannbaums

6 def edges() -> Generator[Edge]

7

8 # Gewicht des minimalen Spannbaums

9 def weight() -> float

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 35 / 60

C4. Minimale Spannbäume Kruskals Algorithmus

C4.4 Kruskals Algorithmus

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 36 / 60

C4. Minimale Spannbäume Kruskals Algorithmus

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Problemdefinition

Generisches
Verfahren

Algorithmus
von Kruskal

Algorithmus
von Prim

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 37 / 60

C4. Minimale Spannbäume Kruskals Algorithmus

High-Level-Perspektive

Algorithmus von Kruskal
I Verarbeite Kanten in aufsteigender Reihenfolge ihrer Gewichte.

I Akzeptiere Kante, wenn sie mit bereits akzeptierten Kanten
keinen Zyklus bildet. Sonst lehne sie ab.

I Nach |V | − 1 akzeptierten Kanten fertig

Wieso ist das eine Instanziierung des generischen Algorithmus?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 38 / 60

C4. Minimale Spannbäume Kruskals Algorithmus

Illustration

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
grau: abgelehnt

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 39 / 60

C4. Minimale Spannbäume Kruskals Algorithmus

Algorithmus von Kruskal konzeptionell

Konzeptionelles Vorgehen
I Beginne mit Wald von |V | Bäumen,

die jeweils nur aus einem Knoten bestehen.

I Jeder Akzeptanzschritt verbindet zwei Bäume zu einem.

I Nach |V | − 1 Schritten besteht der Wald aus einem Baum.

Fragen
I Wie können wir feststellen, ob eine Kante

zwei Bäume miteinander verbindet oder
ob beide Endknoten im gleichen Baum liegen?

I Müssen wir die einzelnen Bäume vollständig repräsentieren?

→ Uns interessieren nur die Zusammenhangskomponenten
→ Union-Find zur Hilfe!

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 40 / 60

C4. Minimale Spannbäume Kruskals Algorithmus

Algorithmus von Kruskal: Implementierung

1 class MSTKruskal:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5 candidates = minPQ() # priority queue

6 for edge in graph.all_edges():

7 candidates.insert(edge)

8 uf = UnionFind(graph.no_nodes())

9

10 while (not candidates.empty() and

11 len(self.included_edges) < graph.no_nodes() - 1):

12 edge = candidates.del_min()

13 v = edge.either_node()

14 w = edge.other_node(v)

15 if uf.connected(v, w):

16 continue

17 uf.union(v,w)

18 self.included_edges.append(edge)

19 self.total_weight += edge.weight()

Wie sehen Methoden
edges() und
weight() aus?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 41 / 60

C4. Minimale Spannbäume Kruskals Algorithmus

Algorithmus von Kruskal: Laufzeit

I Annahme: Heap-Implementierung der Priority-Queue

I Initialisierung Priority-Queue mit allen Kanten: |E | Vergleiche
I Nie mehr als |E | Kanten in Priority-Queue

I Kosten pro Operation in O(log2 |E |)
I Insgesamt Kosten für Priority-Queue-Operationen in

O(|E | log2 |E |)
I Dominiert Kosten für Union-Find-Struktur

Insgesamt: Laufzeit in O(|E | log2 |E |), Speicherbedarf in O(|E |)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 42 / 60

C4. Minimale Spannbäume Prims Algorithmus

C4.5 Prims Algorithmus

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 43 / 60

C4. Minimale Spannbäume Prims Algorithmus

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Problemdefinition

Generisches
Verfahren

Algorithmus
von Kruskal

Algorithmus
von Prim

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 44 / 60

C4. Minimale Spannbäume Prims Algorithmus

High-Level-Perspektive

Algorithmus von Prim
I Wähle einen zufälligen Knoten als initialen Baum.

I Lasse Baum schrittweise um eine weitere Kante wachsen

I Füge jeweils Kante mit minimalem Gewicht hinzu,
die genau einen Endknoten im Baum hat.
→ Akzeptanzschritt

I Fertig, wenn |V | − 1 Kanten hinzugefügt.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 45 / 60

C4. Minimale Spannbäume Prims Algorithmus

Illustration

Mit Startknoten 0

0

1

2

3

4

5

6

7

43.4
45 50.3

42.6

54.9

48.9

79

52.9
43.1

73.9

75
.3

rot: akzeptiert
blau: potentielle nächste Kante

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 46 / 60

C4. Minimale Spannbäume Prims Algorithmus

Implementierung

Schwierigkeit

Finde die Kante mit minimalem Gewicht, die genau einen
Endpunkt im Baum hat.

I Priority Queue candidates, die Kanten nach Gewicht ordnet.
I Zwei Versionen:

I eager: nur Kanten, die exakt einen Endpunkt im Baum haben
I lazy: Kanten, die mindestens einen Endpunkt im Baum haben

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 47 / 60

C4. Minimale Spannbäume Prims Algorithmus

Hauptschleife Lazy-Version

Invariante
Priority-Queue candidate

I enthält alle Kanten mit genau einem Endpunkt im Baum

I und möglicherweise Kanten mit beiden Endpunkten im Baum.

Solange noch nicht |V | − 1 Kanten hinzugefügt wurden:

I Nimm Kante e mit minimalen Kosten aus Priority-Queue

I Verwirf e, falls beide Endpunkte im Baum.
I Sonst sei v Endpunkt, der nicht im Baum ist

I Füge alle an v anliegenden Kanten, deren anderer Endpunkt
nicht im Baum ist, zu candidates hinzu.

I Füge e und v zum Baum hinzu.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 48 / 60

C4. Minimale Spannbäume Prims Algorithmus

Lazy Prim-Algorithmus

1 class LazyPrim:

2 def __init__(self, graph):

3 self.included_edges = []

4 self.total_weight = 0

5

6 # node-indexed list: True if node already in tree

7 included_nodes = [False] * graph.no_nodes()

8 candidates = minPQ()

9

10 # include an arbitrary node (we use 0) in tree

11 included_nodes[0] = True

12 for edge in graph.adjacent_edges(0):

13 candidates.insert(edge)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 49 / 60

C4. Minimale Spannbäume Prims Algorithmus

Lazy Prim-Algorithmus (Forts.)

14

15 while (not candidates.empty() and

16 len(self.included_edges) < graph.no_nodes() - 1):

17 edge = candidates.del_min()

18 v = edge.either_node()

19 w = edge.other_node(v)

20 if included_nodes[v] and included_nodes[w]:

21 continue

22 if included_nodes[w]:

23 v, w = w, v

24 # v is in tree, w is not

25 included_nodes[w] = True

26 self.included_edges.append(edge)

27 self.total_weight += edge.weight()

28 for adjacent in graph.adjacent_edges(w):

29 if not included_nodes[adjacent.other_node(w)]:

30 candidates.insert(adjacent)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 50 / 60

C4. Minimale Spannbäume Prims Algorithmus

Laufzeit und Speicherbedarf

I Engpass ist Anzahl der Vergleiche von Kantengewichten in
Methoden insert und del min der Priority-Queue.

I Höchstens |E | Kanten in Priority-Queue

I Einfügen und Entfernen des Minimums jeweils in O(log |E |)
I Höchstens |E | Einfüge- und |E | Lösch-Operationen
→ Laufzeit O(|E | log |E |)

I Speicherbedarf O(|E |)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 51 / 60

C4. Minimale Spannbäume Prims Algorithmus

Eager-Version

Überlegungen

I Wir könnten Kanten, die bereits beide Endpunkte im Baum
haben, aus der Priority-Queue entfernen.

I Gibt es mehrere Kanten, die einen noch nicht enthaltenen
Knoten mit dem Baum verbinden, können nur die mit
minimalem Gewicht gewählt werden.

I Es reicht, jeweils nur eine solche Kante zu betrachten.

I Idee: Merke dir eine solche Kante für jeden Knoten

I Priority-Queue enthält Knoten, wobei die Priorität das
Gewicht der gespeicherten Kante ist.

Problem: Wie können wir günstig die Priority-Queue updaten?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 52 / 60

C4. Minimale Spannbäume Prims Algorithmus

Exkurs: Indizierte Vorrangwarteschlange

1 class IndexMinPQ:

2 # Fügt key mit Priorität val ein

3 def insert(entry: Object, val: int) -> None

4

5 # Entfernt Eintrag mit kleinster Priorität

6 # und liefert ihn zurück

7 def del_min() -> Object

8

9 # Ist die Priority-Queue leer?

10 def empty() -> bool

11

12 # Ist Eintrag enthalten?

13 def contains(entry: Object) -> bool

14

15 # Ändert Priorität von entry auf val

16 def change(entry: Object, val: int) -> None

17

18 ...

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 53 / 60

C4. Minimale Spannbäume Prims Algorithmus

Exkurs: Indizierte Vorrangwarteschlange

Priority-Queue-Implementierung kann leicht erweitert werden.

Mit der heap-basierten Implementierung erhält man dabei Laufzeit

I O(log n) für insert, change und del min

I O(1) für contains und empty

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 54 / 60

C4. Minimale Spannbäume Prims Algorithmus

Eager Prim-Algorithmus: Datenstrukturen

Verwende nicht (indizierte) Priority-Queue von Kanten, sondern

I edge to: knotenindiziertes Array, das an Stelle v die Kante
(Edge) enthält, die v (in Richtung des gewählten
Startknotens) mit dem Baum verbindet bzw. das am
günstigsten könnte.

I dist to: Array, das an Stelle v das Gewicht
von Kante edge to[v] enthält.

I pq: indizierte Priority-Queue von Knoten
I Knoten noch nicht im Baum
I Können aber mit einer Kante mit dem bestehenden Baum

verbunden werden
I Sortiert nach Gewicht der günstigsten solchen Kante

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 55 / 60

C4. Minimale Spannbäume Prims Algorithmus

Eager Prim-Algorithmus

1 class EagerPrim:

2 def __init__(self, graph):

3 self.edge_to = [None] * graph.no_nodes()

4 self.total_weight = 0

5 self.dist_to = [float('inf')] * graph.no_nodes()

6 self.included_nodes = [False] * graph.no_nodes()

7

8 self.pq = IndexMinPQ()

9

10 self.dist_to[0] = 0

11 self.pq.insert(0, 0)

12 while not self.pq.empty():

13 self.visit(graph, self.pq.del_min())

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 56 / 60

C4. Minimale Spannbäume Prims Algorithmus

Eager Prim-Algorithmus (Forts.)

14

15 def visit(self, graph, v):

16 self.included_nodes[v] = True

17 for edge in graph.adjacent_edges(v):

18 w = edge.other_node(v)

19 if self.included_nodes[w]:

20 continue

21 if edge.weight() < self.dist_to[w]:

22 # update cheapest edge between tree and w

23 self.edge_to[w] = edge

24 self.dist_to[w] = edge.weight()

25 if self.pq.contains(w):

26 self.pq.change(w, edge.weight())

27 else:

28 self.pq.insert(w, edge.weight())

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 57 / 60

C4. Minimale Spannbäume Prims Algorithmus

Laufzeit und Speicherbedarf

I Drei knotenindizierte Arrays

I Höchstens |V | Knoten in Priority-Queue

I Speicherbedarf O(|V |)
I Priority-Queue: Benötigen |V | Einfügeoperationen,
|V | Operationen zum Entfernen des Minimums und
höchstens |E | Prioritätsänderungen

I Jeweils in Zeit O(log |V |) möglich

I Laufzeit O(|E | log |V |)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 58 / 60

C4. Minimale Spannbäume Ausblick

C4.6 Ausblick

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 59 / 60

C4. Minimale Spannbäume Ausblick

Gibt es einen MST-Algorithmus mit linearer Laufzeit?

Algorithmus Speicher Zeit

Kruskal |E | |E | log |E |
Lazy-Prim |E | |E | log |E |
Eager-Prim |V | |E | log |V |

Fredman-Tarjan |V | |E |+ |V | log |V |
Chazelle |V | |E |α(|V |) (beinahe |E |)

unmöglich? |V | |E |?

Es gibt randomisiertes Verfahren mit linearen Zeitbedarf
(Erwartungswert) [Karger, Klein, Tarjan, 1995].

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 60 / 60

	Minimale Spannbäume
	

	Generischer Algorithmus
	

	Graphenrepräsentation
	

	Kruskals Algorithmus
	

	Prims Algorithmus
	

	Ausblick
	

