Algorithmen und Datenstrukturen
C3. Union-Find

Gabriele Roger

Universitat Basel

Union-Find
000000000000 00

Union-Find

Union-Find
0@000000000000

I rf

OH]
e laae !

L FH
fikEmiEd 4

- 5

I

5 |

ﬁr i o !
- ff T S AT
hie:E Lhr' Hh % ° j_%
e TP L S
0 LFHL'TM} }EIMHL
Epna B B naees s e pal s hosass shne
Sind die roten Knoten verbunden?
Wie viele Zusammenhangskomponenten hat der Graph?

I

t

i

—

Union-Find
00@00000000000

Union-Find-Datentyp

© W N e W N

10
11
12
13
14
15

Konnen Frage mit Hilfe folgendem Datentyp beantworten:

class UnionFind:

Initialisiert n Knoten mit Namen O, ..., n-1
def __init__(n: int) -> Nome

Fugt Verbindung zwischen v und w hinzu
def union(v: int, w: int) -> None

Komponentenbezeichner fir v
def find(v: int) -> int

Sind v und w verbunden?
def connected(v: int, w: int) -> bool

Anzahl der Zusammenhangskomponenten
def count() -> int

Union-Find 4 enhangskomponenten und Aquivalenz
000e0000000000 O

(Etwas) naiver Algorithmus: Quick-Find

m Fiir n Knoten: Array id der Lange n

m Eintrag an Stelle / ist Bezeichner der
Zusammenhangskomponente, in der Knoten i liegt.

Union-Find

000e0000000000

(Etwas) naiver Algorithmus: Quick-Find

m Fir n Knoten: Array id der Lange n

m Eintrag an Stelle / ist Bezeichner der
Zusammenhangskomponente, in der Knoten i liegt.

m Anfanglich liegt jeder Knoten (alleine) in seiner eigenen
Zusammenhangskomponente (insgesamt n Stiick).

Union-Find

000e0000000000

(Etwas) naiver Algorithmus: Quick-Find

m Fir n Knoten: Array id der Lange n

m Eintrag an Stelle / ist Bezeichner der
Zusammenhangskomponente, in der Knoten i liegt.

m Anfanglich liegt jeder Knoten (alleine) in seiner eigenen
Zusammenhangskomponente (insgesamt n Stiick).

m Aktualisiere das Array bei jedem Aufruf von union.

Union-Find
000080000000 00

Quick-Find-Algorithmus

1 class QuickFind:

2 def __init__(self, no_nodes):

3 self.id = list(range(no_nodes))

4 self.components = no_nodes

5 K\\\\

6 def find(self, v): [0, 1, .. no,nodes—l]
7 return self.id[v]

8

9 def union(self, v, w):

10 id_v = self.find(v)

11 id_w = self.find(w)

12 if id_v == id_w: # already in same component

13 return

14 # replace all occurrences of 2d_v in self.id with id_w
15 for i in range(len(self.id)):

16 if self.id[i] == id_v:

17 self.id[i] = id_w

18 self.components -= 1 # we merged two components

Union-Find
00000@00000000

Quick-Find-Algorithmus (Fortsetzung)

angskomponenten und Aquivalenz

20 def connected(self, v, w):
21 return self.find(v) == self.find(w)
22
23 def count(self):
24 return self.components
Aufwand?

m Kostenmodell = Anzahl Arrayzugriffe
m ein Arrayzugriff fiir jeden Aufruf von find

m zwischen n+ 3 und 2n 4+ 1 Arrayzugriffe
fiir jeden Aufruf von union, der zwei Komponenten vereinigt

Union-Find Z imenhangskomponenten und Aquivale

0O00000e0000000

Etwas besserer Algorithmus: Quick-Union

m (implizite) Baumstruktur zur Reprasentation jeder
Zusammenhangskomponente

m Repréasentiert durch Array mit Eintrag des Elternknotens
(Wurzel: Referenz auf sich selbst)
01234561738
13[5[of3]6[5[3[6]5]

Union-Find sa € mponenten und Aquivale

0O00000e0000000

Etwas besserer Algorithmus: Quick-Union

m (implizite) Baumstruktur zur Reprasentation jeder
Zusammenhangskomponente

m Reprasentiert durch Array mit Eintrag des Elternknotens
(Wurzel: Referenz auf sich selbst)

0123456738
315]0]3]6[5]3]6]5]

AVAN!

m Waurzelknoten dient als Bezeichner der
Zusammenhangskomponente

3

Union-Find
0000000 e000000

Quick-Union-Algorithmus

1 class QuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))
4 self.components = no_nodes

5

6 def find(self, v):

7 while self.parent[v] != v:

8 v = self.parent[v]

9 return v

10

11 def union(self, v, w):

12 id_v = self.find(v)

13 id_w = self.find(w)

14 if id_v == id_w: # already in same component
15 return

16 self .parent[id_v] = id_w

17 self.components -= 1

18

19 # connected und count wie betr QuickFind

Union-Find 4 enhangskomponenten und Aquivalenz

0O0000000e00000

Erste Verbesserung

m Problem bei Quick-Union: Bdume kdénnen zu Ketten entarten
— find bendtigt lineare Zeit in der Grosse der Komponente.

m Idee: Hange in union flacheren Baum an Wurzel
des tieferen Baums

Union-Find 1angskomponenten und Aquivalenz}

000000000 e0000

Ranked-Quick-Union-Algorithmus

1 class RankedQuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]
6

7 def union(self, v, w):

8 id_v = self.find(v)

9 id_w = self.find(w)

10 if id_v == id_w:

11 return

12 if self.rank[id_w] < self.rank[id_v]:

13 self .parent[id_w] = id_v

14 else:

15 self.parent[id_v] = id_w

16 if self.rank[id_v] == self.rank[id_w]:
17 self.rank[id_w] += 1

18 self.components -= 1

19

20 # connected, count und find wie bei QuickUnion

Union-Find

0000000000800 0

Zweite Verbesserung

Pfadkompression

m Idee: Hange in find alle traversierten Knoten direkt
an die Wurzel um

m Wir aktualisieren die Hohe des Baumes bei der
Pfadkompression nicht.

m Wert von rank kann von tatsichlicher Hohe abweichen.
m Deshalb heisst er auch Rang (rank) statt Hohe.

Union-Find
00000000000 e00

Ranked-Quick-Union-Algorithmus mit Pfadkompression

1 class RankedQuickUnionWithPathCompression:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]
6

7

8

9

def find(self, v):
if self.parent[v] == v:
return v
10 root = self.find(self.parent[v])
11 self .parent[v] = root
12 return root
13
14 # connected, count und unton wie bei Ranked@uickUnion

Union-Find
000000000000 e0

Diskussion

m Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten fiir alle Operationen

Union-Find 4 angskomponenten und Aquivalenzk

0000000000000

Diskussion

m Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten fiir alle Operationen

m Genauer: [Tarjan 1975]

m m Aufrufe von £ind bei n Objekten (und héchstens n — 1
Aufrufe von union, die zwei Komponenten vereinigen)

m O(ma(m, n)) Arrayzugriffe

m « ist Umkehrfunktion einer Variante der Ackermann-Funktion

m In der Praxis ist a(m, n) < 3.

Union-Find angskomponenten und Aquivalenzklassen

0000000000000

Diskussion

m Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten fiir alle Operationen
m Genauer: [Tarjan 1975]
m m Aufrufe von £ind bei n Objekten (und hochstens n — 1
Aufrufe von union, die zwei Komponenten vereinigen)
m O(ma(m, n)) Arrayzugriffe
m « ist Umkehrfunktion einer Variante der Ackermann-Funktion
m In der Praxis ist a(m, n) < 3.
m Trotzdem: es kann keinen Union-Find-Algorithmus geben,
der lineare Zeit garantieren kann.
(unter ,, Cell-Probe"-Berechnungsmodell)

Union-Find

0000000000000

Vergleich mit explorationsbasiertem Verfahren

Kapitel C2: Algorithmus ConnectedComponents,
der auf Graphenexploration basiert

Nach der Vorberechnung kosten Anfragen nur konstante Zeit.

In der Praxis ist Union-Find meist schneller, da der Graph
fiir viele Zwecke nicht vollstindig aufgebaut werden muss.

Ist der Graph schon aufgebaut, kann Graphenexploration
besser sein.
m Weiterer Vorteil von Union-Find

m Online-Verfahren
m problemloses Hinzufiigen weiterer Kanten

Zusammenhangskomponenten und Aquivalenzklassen

0000000

Zusammenhangskomponenten und
Aquivalenzklassen

Union-Find Zusammenhangskomponenten und Aquivalenzklassen

)¢)OO0 O« 0000 0@00000

Wiederholung: Zusammenhangskomponenten

Ungerichteter Graph

m Zwei Knoten v und v sind genau dann in der gleichen
Zusammenhangskomponente, wenn es einen Pfad
zwischen u und v gibt (= Knoten u und v verbunden sind).

(7))
(5) (9)

(0)—(1)
oo
(4)

Zusammenhangskomponenten und Aquivalenzklassen

00e0000

Zusammenhangskomponenten: Eigenschaften

m Die Zusammenhangskomponenten definieren eine
Partition der Knoten:
m Jeder Knoten ist in einer Zusammenhangskomponente.
m Kein Knoten ist in mehr als einer Zusammenhangskomponente.
m ,ist verbunden mit" ist Aquivalenzrelation
m reflexiv: Jeder Knoten ist mit sich selbst verbunden.
m symmetrisch: Ist u mit v verbunden,
dann ist v mit u verbunden.
m transitiv: Ist ¥ mit v verbunden und v mit w verbunden,
dann ist v mit w verbunden.

Union-Find Zusammenhangskomponenten und Aquivalenzklassen

YOO 00000000000 [o]e]e] lelele)

Partition allgemein

Definition (Partition)

Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

m jedes Element von M in einer Menge in P vorkommt:
Usep S =M, und

m die Mengen in P paarweise disjunkt sind:
SNS' =0 firS,S"ePmitS#S".

Die Mengen in P heissen Blocke.

M={e,...,es}
m Py = {{er, e}, {es}, {e2, e5}}
m P, ={{e1,e4,e5},{e3}}
m P;={{e,e4,65},{e3},{e2, e5}}
m Py = {{e}, {e2}, {3}, {es}, {es}}

Union-Find Zusammenhangskomponenten und Aquivalenzklassen

YOO 00000000000 [o]e]e] lelele)

Partition allgemein

Definition (Partition)

Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

m jedes Element von M in einer Menge in P vorkommt:
Usep S =M, und

m die Mengen in P paarweise disjunkt sind:
SNS' =0 firS,S"ePmitS#S".

Die Mengen in P heissen Blocke.

M={e,...,es}
m P ={{ei,es},{e3},{e2, es}} ist eine Partition von M.
m Py = {{e1,e&,65},{e3}}
m Py ={{e1, e, 65} {e3}, {e2, e5}}
m Py = {{e}, {e2}, {3}, {es}, {es}}

Union-Find Zusammenhangskomponenten und Aquivalenzklassen

YOO 00000000000 [o]e]e] lelele)

Partition allgemein

Definition (Partition)

Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

m jedes Element von M in einer Menge in P vorkommt:
Usep S =M, und

m die Mengen in P paarweise disjunkt sind:
SNS' =0 firS,S"ePmitS#S".

Die Mengen in P heissen Blocke.

M= {e,..., es5}
m P ={{ei,es},{e3},{e2, es}} ist eine Partition von M.
m P, ={{e1,es,e5},{e3}} ist keine Partition von M.
m P3={{e1,e4,65},{e3},{e2,65}}
m Py ={{ei}, {e},{es},{es}, {e5}}

Union-Find Zusammenhangskomponenten und Aquivalenzklassen

YOO 00000000000 [o]e]e] lelele)

Partition allgemein

Definition (Partition)

Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

m jedes Element von M in einer Menge in P vorkommt:
Usep S =M, und

m die Mengen in P paarweise disjunkt sind:
SNS' =0 firS,S"ePmitS#S".

Die Mengen in P heissen Blocke.

M={e,...,es}
m P ={{ei,es},{e3},{e2, es}} ist eine Partition von M.
m P, ={{e1,es,e5},{e3}} ist keine Partition von M.
m P3={{e1,es,e5},{e3},{e2, e5}} ist keine Partition von M.

mP,= {{91}7 {62}7 {63}7 {64}, {65}}

Union-Find Zusammenhangskomponenten und Aquivalenzklassen

YOO 00000000000 [o]e]e] lelele)

Partition allgemein

Definition (Partition)

Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

m jedes Element von M in einer Menge in P vorkommt:
Usep S =M, und

m die Mengen in P paarweise disjunkt sind:
SNS' =0 firS,S"ePmitS#S".

Die Mengen in P heissen Blocke.

M={e,...,es}
m P ={{ei,es},{e3},{e2, es}} ist eine Partition von M.
m Py = {{e1,es,e5},{e3}} ist keine Partition von M.
m P3={{e1,es,e5},{e3},{e2, e5}} ist keine Partition von M.
m Py ={{ei},{e2},{e3},{es},{es}} ist eine Partition von M.

Zusammenhangskomponenten und Aquivalenzklassen

[o]e]e]e] lele)

Aquivalenzrelation allgemein

Definition (Aquivalenzrelation)

Eine Aquivalenzrelation auf einer Menge M ist eine
symmetrische, transitive und reflexive Relation R C M x M.
Wir schreiben a ~ b fiir (a, b) € R und sagen a ist dquivalent zu b.

m symmetrisch: a ~ b impliziert b ~ a

m transitiv: a ~ b und b ~ ¢ impliziert a ~ ¢

m reflexiv: fiir alle e e M: e ~ e)

Zusammenhangskomponenten und Aquivalenzklassen

0000080

Aquivalenzklassen

Definition (Aquivalenzklassen)

Sei R eine Aquivalenzrelation auf der Menge M.
Die Aquivalenzklasse von a € M ist die Menge

[a] ={be M| a~ b}.

Zusammenhangskomponenten und Aquivalenzklassen

0000080

Aquivalenzklassen

Definition (Aquivalenzklassen)

Sei R eine Aquivalenzrelation auf der Menge M.
Die Aquivalenzklasse von a € M ist die Menge

[a] ={be M| a~ b}.

= Die Menge aller Aquivalenzklassen ist eine Partition von M.

Zusammenhangskomponenten und Aquivalenzklassen

50000000 0000000

Aquivalenzklassen

Definition (Aquivalenzklassen)

Sei R eine Aquivalenzrelation auf der Menge M.
Die Aquivalenzklasse von a € M ist die Menge

[a] ={be M| a~ b}.

m Die Menge aller Aquivalenzklassen ist eine Partition von M.
m Umgekehrt:
Fiir Partition P definiere R = {(x,y) | 3B € P: x.y € B}
(also x ~ y genau dann, wenn x und y im gleichen Block).
Dann ist R eine Aquivalenzrelation.

Zusammenhangskomponenten und Aquivalenzklassen

00000000 0000000

Aquivalenzklassen

Definition (Aquivalenzklassen)

Sei R eine Aquivalenzrelation auf der Menge M.
Die Aquivalenzklasse von a € M ist die Menge

[a] ={be M| a~ b}.

= Die Menge aller Aquivalenzklassen ist eine Partition von M.

m Umgekehrt:
Fiir Partition P definiere R = {(x,y) | 3B € P: x.y € B}
(also x ~ y genau dann, wenn x und y im gleichen Block).
Dann ist R eine Aquivalenzrelation.

m Konnen Partitionen als Aquivalenzklassen betrachten und
umgekehrt.

Zusammenhangskomponenten und Aquivalenzklassen
000000e

Union-Find und Aquivalenzen

m Gegeben: endliche Menge M,
Sequenz s von Aquivalenzen a ~ b iiber M

Zusammenhangskomponenten und Aquivalenzklassen

000000e

Union-Find und Aquivalenzen

m Gegeben: endliche Menge M,
Sequenz s von Aquivalenzen a ~ b iiber M

m Fasse Aquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.

Zusammenhangskomponenten und Aquivalenzklassen

000000e

Union-Find und Aquivalenzen

m Gegeben: endliche Menge M,
Sequenz s von Aquivalenzen a ~ b iiber M

m Fasse Aquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.

m Die Zusammenhangskomponenten entsprechen den

Aquivalenzklassen der feinsten Aquivalenzrelation,
die alle Aquivalenzen aus s enthilt.

m keine ,,unndtigen” Aquivalenzen

Zusammenhangskomponenten und Aquivalenzklassen

000000e

Union-Find und Aquivalenzen

m Gegeben: endliche Menge M,
Sequenz s von Aquivalenzen a ~ b iiber M

m Fasse Aquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.

m Die Zusammenhangskomponenten entsprechen den

Aquivalenzklassen der feinsten Aquivalenzrelation,
die alle Aquivalenzen aus s enthilt.

m keine ,,unndtigen” Aquivalenzen

Wir konnen die Union-Find-Datenstruktur zur
Bestimmung der Aquivalenzklassen verwenden.

	Union-Find
	

	Zusammenhangskomponenten und Äquivalenzklassen
	

