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Fragen

Sind die roten Knoten verbunden?
Wie viele Zusammenhangskomponenten hat der Graph?
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Union-Find-Datentyp

Können Frage mit Hilfe folgendem Datentyp beantworten:

1 class UnionFind:

2 # Initialisiert n Knoten mit Namen 0, ..., n-1

3 def __init__(n: int) -> None

4

5 # Fügt Verbindung zwischen v und w hinzu

6 def union(v: int, w: int) -> None

7

8 # Komponentenbezeichner für v

9 def find(v: int) -> int

10

11 # Sind v und w verbunden?

12 def connected(v: int, w: int) -> bool

13

14 # Anzahl der Zusammenhangskomponenten

15 def count() -> int
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(Etwas) naiver Algorithmus: Quick-Find

Für n Knoten: Array id der Länge n

Eintrag an Stelle i ist Bezeichner der
Zusammenhangskomponente, in der Knoten i liegt.

Anfänglich liegt jeder Knoten (alleine) in seiner eigenen
Zusammenhangskomponente (insgesamt n Stück).

Aktualisiere das Array bei jedem Aufruf von union.
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Quick-Find-Algorithmus

1 class QuickFind:

2 def __init__(self, no_nodes):

3 self.id = list(range(no_nodes))

4 self.components = no_nodes

5

6 def find(self, v):

7 return self.id[v]

8

9 def union(self, v, w):

10 id_v = self.find(v)

11 id_w = self.find(w)

12 if id_v == id_w: # already in same component

13 return

14 # replace all occurrences of id_v in self.id with id_w

15 for i in range(len(self.id)):

16 if self.id[i] == id_v:

17 self.id[i] = id_w

18 self.components -= 1 # we merged two components

[0, 1, ..., no nodes-1]
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Quick-Find-Algorithmus (Fortsetzung)

20 def connected(self, v, w):

21 return self.find(v) == self.find(w)

22

23 def count(self):

24 return self.components

Aufwand?

Kostenmodell = Anzahl Arrayzugriffe

ein Arrayzugriff für jeden Aufruf von find

zwischen n + 3 und 2n + 1 Arrayzugriffe
für jeden Aufruf von union, der zwei Komponenten vereinigt
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Etwas besserer Algorithmus: Quick-Union

(implizite) Baumstruktur zur Repräsentation jeder
Zusammenhangskomponente

Repräsentiert durch Array mit Eintrag des Elternknotens
(Wurzel: Referenz auf sich selbst)
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Wurzelknoten dient als Bezeichner der
Zusammenhangskomponente
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Quick-Union-Algorithmus

1 class QuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5

6 def find(self, v):

7 while self.parent[v] != v:

8 v = self.parent[v]

9 return v

10

11 def union(self, v, w):

12 id_v = self.find(v)

13 id_w = self.find(w)

14 if id_v == id_w: # already in same component

15 return

16 self.parent[id_v] = id_w

17 self.components -= 1

18

19 # connected und count wie bei QuickFind
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Erste Verbesserung

Problem bei Quick-Union: Bäume können zu Ketten entarten
→ find benötigt lineare Zeit in der Grösse der Komponente.

Idee: Hänge in union flacheren Baum an Wurzel
Idee: des tieferen Baums
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Ranked-Quick-Union-Algorithmus

1 class RankedQuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def union(self, v, w):

8 id_v = self.find(v)

9 id_w = self.find(w)

10 if id_v == id_w:

11 return

12 if self.rank[id_w] < self.rank[id_v]:

13 self.parent[id_w] = id_v

14 else:

15 self.parent[id_v] = id_w

16 if self.rank[id_v] == self.rank[id_w]:

17 self.rank[id_w] += 1

18 self.components -= 1

19

20 # connected, count und find wie bei QuickUnion
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Zweite Verbesserung

Pfadkompression

Idee: Hänge in find alle traversierten Knoten direkt
an die Wurzel um

Wir aktualisieren die Höhe des Baumes bei der
Pfadkompression nicht.

Wert von rank kann von tatsächlicher Höhe abweichen.
Deshalb heisst er auch Rang (rank) statt Höhe.
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Ranked-Quick-Union-Algorithmus mit Pfadkompression

1 class RankedQuickUnionWithPathCompression:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def find(self, v):

8 if self.parent[v] == v:

9 return v

10 root = self.find(self.parent[v])

11 self.parent[v] = root

12 return root

13

14 # connected, count und union wie bei RankedQuickUnion
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Diskussion

Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten für alle Operationen

Genauer: [Tarjan 1975]

m Aufrufe von find bei n Objekten (und höchstens n − 1
Aufrufe von union, die zwei Komponenten vereinigen)
O(mα(m, n)) Arrayzugriffe
α ist Umkehrfunktion einer Variante der Ackermann-Funktion
In der Praxis ist α(m, n) ≤ 3.

Trotzdem: es kann keinen Union-Find-Algorithmus geben,
der lineare Zeit garantieren kann.
(unter

”
Cell-Probe“-Berechnungsmodell)
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Vergleich mit explorationsbasiertem Verfahren

Kapitel C2: Algorithmus ConnectedComponents,
der auf Graphenexploration basiert

Nach der Vorberechnung kosten Anfragen nur konstante Zeit.

In der Praxis ist Union-Find meist schneller, da der Graph
für viele Zwecke nicht vollständig aufgebaut werden muss.

Ist der Graph schon aufgebaut, kann Graphenexploration
besser sein.

Weiterer Vorteil von Union-Find

Online-Verfahren
problemloses Hinzufügen weiterer Kanten
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Zusammenhangskomponenten und
Äquivalenzklassen
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Wiederholung: Zusammenhangskomponenten

Ungerichteter Graph

Zwei Knoten u und v sind genau dann in der gleichen
Zusammenhangskomponente, wenn es einen Pfad
zwischen u und v gibt (= Knoten u und v verbunden sind).
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Zusammenhangskomponenten: Eigenschaften

Die Zusammenhangskomponenten definieren eine
Partition der Knoten:

Jeder Knoten ist in einer Zusammenhangskomponente.
Kein Knoten ist in mehr als einer Zusammenhangskomponente.

”
ist verbunden mit“ ist Äquivalenzrelation

reflexiv: Jeder Knoten ist mit sich selbst verbunden.
symmetrisch: Ist u mit v verbunden,
dann ist v mit u verbunden.
transitiv: Ist u mit v verbunden und v mit w verbunden,
dann ist u mit w verbunden.
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Partition allgemein

Definition (Partition)

Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

jedes Element von M in einer Menge in P vorkommt:⋃
S∈P S = M, und

die Mengen in P paarweise disjunkt sind:
S ∩ S ′ = ∅ für S ,S ′ ∈ P mit S 6= S ′.

Die Mengen in P heissen Blöcke.

M = {e1, . . . , e5}
P1 = {{e1, e4}, {e3}, {e2, e5}}

ist eine Partition von M.

P2 = {{e1, e4, e5}, {e3}}

ist keine Partition von M.

P3 = {{e1, e4, e5}, {e3}, {e2, e5}}

ist keine Partition von M.

P4 = {{e1}, {e2}, {e3}, {e4}, {e5}}

ist eine Partition von M.



Union-Find Zusammenhangskomponenten und Äquivalenzklassen
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Äquivalenzrelation allgemein

Definition (Äquivalenzrelation)

Eine Äquivalenzrelation auf einer Menge M ist eine
symmetrische, transitive und reflexive Relation R ⊆ M ×M.
Wir schreiben a ∼ b für (a, b) ∈ R und sagen a ist äquivalent zu b.

symmetrisch: a ∼ b impliziert b ∼ a

transitiv: a ∼ b und b ∼ c impliziert a ∼ c

reflexiv: für alle e ∈ M: e ∼ e
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Äquivalenzklassen

Definition (Äquivalenzklassen)

Sei R eine Äquivalenzrelation auf der Menge M.
Die Äquivalenzklasse von a ∈ M ist die Menge

[a] = {b ∈ M | a ∼ b}.

Die Menge aller Äquivalenzklassen ist eine Partition von M.

Umgekehrt:
Für Partition P definiere R = {(x , y) | ∃B ∈ P : x , y ∈ B}
(also x ∼ y genau dann, wenn x und y im gleichen Block).
Dann ist R eine Äquivalenzrelation.

Können Partitionen als Äquivalenzklassen betrachten und
umgekehrt.
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Können Partitionen als Äquivalenzklassen betrachten und
umgekehrt.



Union-Find Zusammenhangskomponenten und Äquivalenzklassen
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Können Partitionen als Äquivalenzklassen betrachten und
umgekehrt.



Union-Find Zusammenhangskomponenten und Äquivalenzklassen

Union-Find und Äquivalenzen

Gegeben: endliche Menge M,
Sequenz s von Äquivalenzen a ∼ b über M

Fasse Äquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.

Die Zusammenhangskomponenten entsprechen den
Äquivalenzklassen der feinsten Äquivalenzrelation,
die alle Äquivalenzen aus s enthält.

keine
”
unnötigen“ Äquivalenzen

Wir können die Union-Find-Datenstruktur zur
Bestimmung der Äquivalenzklassen verwenden.
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Gegeben: endliche Menge M,
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