
Algorithmen und Datenstrukturen
C3. Union-Find

Gabriele Röger

Universität Basel

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 23

Algorithmen und Datenstrukturen
— C3. Union-Find

C3.1 Union-Find

C3.2 Zusammenhangskomponenten und
Äquivalenzklassen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 23

C3. Union-Find Union-Find

C3.1 Union-Find

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 23

C3. Union-Find Union-Find

Fragen

Sind die roten Knoten verbunden?
Wie viele Zusammenhangskomponenten hat der Graph?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 23



C3. Union-Find Union-Find

Union-Find-Datentyp

Können Frage mit Hilfe folgendem Datentyp beantworten:

1 class UnionFind:

2 # Initialisiert n Knoten mit Namen 0, ..., n-1

3 def __init__(n: int) -> None

4

5 # Fügt Verbindung zwischen v und w hinzu

6 def union(v: int, w: int) -> None

7

8 # Komponentenbezeichner für v

9 def find(v: int) -> int

10

11 # Sind v und w verbunden?

12 def connected(v: int, w: int) -> bool

13

14 # Anzahl der Zusammenhangskomponenten

15 def count() -> int

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 23

C3. Union-Find Union-Find

(Etwas) naiver Algorithmus: Quick-Find

I Für n Knoten: Array id der Länge n

I Eintrag an Stelle i ist Bezeichner der
Zusammenhangskomponente, in der Knoten i liegt.

I Anfänglich liegt jeder Knoten (alleine) in seiner eigenen
Zusammenhangskomponente (insgesamt n Stück).

I Aktualisiere das Array bei jedem Aufruf von union.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 23

C3. Union-Find Union-Find

Quick-Find-Algorithmus

1 class QuickFind:

2 def __init__(self, no_nodes):

3 self.id = list(range(no_nodes))

4 self.components = no_nodes

5

6 def find(self, v):

7 return self.id[v]

8

9 def union(self, v, w):

10 id_v = self.find(v)

11 id_w = self.find(w)

12 if id_v == id_w: # already in same component

13 return

14 # replace all occurrences of id_v in self.id with id_w

15 for i in range(len(self.id)):

16 if self.id[i] == id_v:

17 self.id[i] = id_w

18 self.components -= 1 # we merged two components

[0, 1, ..., no nodes-1]

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 23

C3. Union-Find Union-Find

Quick-Find-Algorithmus (Fortsetzung)

20 def connected(self, v, w):

21 return self.find(v) == self.find(w)

22

23 def count(self):

24 return self.components

Aufwand?

I Kostenmodell = Anzahl Arrayzugriffe

I ein Arrayzugriff für jeden Aufruf von find

I zwischen n + 3 und 2n + 1 Arrayzugriffe
für jeden Aufruf von union, der zwei Komponenten vereinigt

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 23



C3. Union-Find Union-Find

Etwas besserer Algorithmus: Quick-Union

I (implizite) Baumstruktur zur Repräsentation jeder
Zusammenhangskomponente

I Repräsentiert durch Array mit Eintrag des Elternknotens
(Wurzel: Referenz auf sich selbst)

0 1 2 3 4 5 6 7 8

3 5 0 3 6 5 3 6 5
3

6

4 7

0

2

5

8 1

I Wurzelknoten dient als Bezeichner der
Zusammenhangskomponente

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 23

C3. Union-Find Union-Find

Quick-Union-Algorithmus

1 class QuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5

6 def find(self, v):

7 while self.parent[v] != v:

8 v = self.parent[v]

9 return v

10

11 def union(self, v, w):

12 id_v = self.find(v)

13 id_w = self.find(w)

14 if id_v == id_w: # already in same component

15 return

16 self.parent[id_v] = id_w

17 self.components -= 1

18

19 # connected und count wie bei QuickFind

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 23

C3. Union-Find Union-Find

Erste Verbesserung

I Problem bei Quick-Union: Bäume können zu Ketten entarten
→ find benötigt lineare Zeit in der Grösse der Komponente.

I Idee: Hänge in union flacheren Baum an Wurzel
Idee: des tieferen Baums

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 23

C3. Union-Find Union-Find

Ranked-Quick-Union-Algorithmus

1 class RankedQuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def union(self, v, w):

8 id_v = self.find(v)

9 id_w = self.find(w)

10 if id_v == id_w:

11 return

12 if self.rank[id_w] < self.rank[id_v]:

13 self.parent[id_w] = id_v

14 else:

15 self.parent[id_v] = id_w

16 if self.rank[id_v] == self.rank[id_w]:

17 self.rank[id_w] += 1

18 self.components -= 1

19

20 # connected, count und find wie bei QuickUnion

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 23



C3. Union-Find Union-Find

Zweite Verbesserung

Pfadkompression

I Idee: Hänge in find alle traversierten Knoten direkt
an die Wurzel um

I Wir aktualisieren die Höhe des Baumes bei der
Pfadkompression nicht.
I Wert von rank kann von tatsächlicher Höhe abweichen.
I Deshalb heisst er auch Rang (rank) statt Höhe.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 23

C3. Union-Find Union-Find

Ranked-Quick-Union-Algorithmus mit Pfadkompression

1 class RankedQuickUnionWithPathCompression:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def find(self, v):

8 if self.parent[v] == v:

9 return v

10 root = self.find(self.parent[v])

11 self.parent[v] = root

12 return root

13

14 # connected, count und union wie bei RankedQuickUnion

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 23

C3. Union-Find Union-Find

Diskussion

I Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten für alle Operationen

I Genauer: [Tarjan 1975]
I m Aufrufe von find bei n Objekten (und höchstens n − 1

Aufrufe von union, die zwei Komponenten vereinigen)
I O(mα(m, n)) Arrayzugriffe
I α ist Umkehrfunktion einer Variante der Ackermann-Funktion
I In der Praxis ist α(m, n) ≤ 3.

I Trotzdem: es kann keinen Union-Find-Algorithmus geben,
der lineare Zeit garantieren kann.
(unter

”
Cell-Probe“-Berechnungsmodell)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 23

C3. Union-Find Union-Find

Vergleich mit explorationsbasiertem Verfahren

I Kapitel C2: Algorithmus ConnectedComponents,
der auf Graphenexploration basiert

I Nach der Vorberechnung kosten Anfragen nur konstante Zeit.

I In der Praxis ist Union-Find meist schneller, da der Graph
für viele Zwecke nicht vollständig aufgebaut werden muss.

I Ist der Graph schon aufgebaut, kann Graphenexploration
besser sein.

I Weiterer Vorteil von Union-Find
I Online-Verfahren
I problemloses Hinzufügen weiterer Kanten

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 23



C3. Union-Find Zusammenhangskomponenten und Äquivalenzklassen

C3.2 Zusammenhangskomponenten
und Äquivalenzklassen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 23

C3. Union-Find Zusammenhangskomponenten und Äquivalenzklassen

Wiederholung: Zusammenhangskomponenten

Ungerichteter Graph

I Zwei Knoten u und v sind genau dann in der gleichen
Zusammenhangskomponente, wenn es einen Pfad
zwischen u und v gibt (= Knoten u und v verbunden sind).

0 1

2 3

4
5

6

7 8

9

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 23

C3. Union-Find Zusammenhangskomponenten und Äquivalenzklassen

Zusammenhangskomponenten: Eigenschaften

I Die Zusammenhangskomponenten definieren eine
Partition der Knoten:
I Jeder Knoten ist in einer Zusammenhangskomponente.
I Kein Knoten ist in mehr als einer Zusammenhangskomponente.

I
”
ist verbunden mit“ ist Äquivalenzrelation
I reflexiv: Jeder Knoten ist mit sich selbst verbunden.
I symmetrisch: Ist u mit v verbunden,

dann ist v mit u verbunden.
I transitiv: Ist u mit v verbunden und v mit w verbunden,

dann ist u mit w verbunden.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 23

C3. Union-Find Zusammenhangskomponenten und Äquivalenzklassen

Partition allgemein

Definition (Partition)

Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

I jedes Element von M in einer Menge in P vorkommt:⋃
S∈P S = M, und

I die Mengen in P paarweise disjunkt sind:
S ∩ S ′ = ∅ für S , S ′ ∈ P mit S 6= S ′.

Die Mengen in P heissen Blöcke.

M = {e1, . . . , e5}
I P1 = {{e1, e4}, {e3}, {e2, e5}} ist eine Partition von M.

I P2 = {{e1, e4, e5}, {e3}} ist keine Partition von M.

I P3 = {{e1, e4, e5}, {e3}, {e2, e5}} ist keine Partition von M.

I P4 = {{e1}, {e2}, {e3}, {e4}, {e5}} ist eine Partition von M.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 23



C3. Union-Find Zusammenhangskomponenten und Äquivalenzklassen

Äquivalenzrelation allgemein

Definition (Äquivalenzrelation)

Eine Äquivalenzrelation auf einer Menge M ist eine
symmetrische, transitive und reflexive Relation R ⊆ M ×M.
Wir schreiben a ∼ b für (a, b) ∈ R und sagen a ist äquivalent zu b.

I symmetrisch: a ∼ b impliziert b ∼ a

I transitiv: a ∼ b und b ∼ c impliziert a ∼ c

I reflexiv: für alle e ∈ M: e ∼ e

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 23

C3. Union-Find Zusammenhangskomponenten und Äquivalenzklassen

Äquivalenzklassen

Definition (Äquivalenzklassen)

Sei R eine Äquivalenzrelation auf der Menge M.
Die Äquivalenzklasse von a ∈ M ist die Menge

[a] = {b ∈ M | a ∼ b}.

I Die Menge aller Äquivalenzklassen ist eine Partition von M.

I Umgekehrt:
Für Partition P definiere R = {(x , y) | ∃B ∈ P : x , y ∈ B}
(also x ∼ y genau dann, wenn x und y im gleichen Block).
Dann ist R eine Äquivalenzrelation.

I Können Partitionen als Äquivalenzklassen betrachten und
umgekehrt.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 23

C3. Union-Find Zusammenhangskomponenten und Äquivalenzklassen

Union-Find und Äquivalenzen

I Gegeben: endliche Menge M,
Sequenz s von Äquivalenzen a ∼ b über M

I Fasse Äquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.

I Die Zusammenhangskomponenten entsprechen den
Äquivalenzklassen der feinsten Äquivalenzrelation,
die alle Äquivalenzen aus s enthält.
I keine

”
unnötigen“ Äquivalenzen

Wir können die Union-Find-Datenstruktur zur
Bestimmung der Äquivalenzklassen verwenden.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 23


	Union-Find
	

	Zusammenhangskomponenten und Äquivalenzklassen
	


