Algorithmen und Datenstrukturen
— C3. Union-Find

Algorithmen und Datenstrukturen
3. Union-Find C3.1 Union-Find

Gabriele Roger
(C3.2 Zusammenhangskomponenten und

Universitt Basel Aquivalenzklassen
G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 1/23 G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2/23
C3. Union-Find Union-Find C3. Union-Find Union-Find
Fragen

| AL g
4 - sﬂ@FjHﬂ
MI

C3.1 Union-Find Sﬁﬁﬁ : i guanl
. W D (O Lr_l:
HEH ohy'o
T Hj}ﬂjﬁ
T T
SIS IL“ R

Sind die roten Knoten verbunden?
Wie viele Zusammenhangskomponenten hat der Graph?

o
o
4
[T
E
ﬂ:

s

I,E
e
I

f{

BaRaass e

11
L1

iRk
JI'V
s

HHH
[l
i
|
L)L

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 3/23 G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4 /23




C3. Union-Find

(Etwas) naiver Algorithmus: Quick-Find

» Fiir n Knoten: Array id der Lange n

» Eintrag an Stelle i ist Bezeichner der
Zusammenhangskomponente, in der Knoten i liegt.

» Anfinglich liegt jeder Knoten (alleine) in seiner eigenen
Zusammenhangskomponente (insgesamt n Stiick).

» Aktualisiere das Array bei jedem Aufruf von union.

Union-Find

C3. Union-Find Union-Find
Union-Find-Datentyp
Konnen Frage mit Hilfe folgendem Datentyp beantworten:
1 class UnionFind:
2 # Initialistert n Knoten mit Namen O, ..., n-1
3 def __init__(n: int) -> None
4
5 # Figt Verbindung zwischen v und w hinzu
6 def union(v: int, w: int) -> None
7
8 # Komponentenbezeichner fur v
9 def find(v: int) -> int
10
11 # Sind v und w verbunden?
12 def connected(v: int, w: int) -> bool
13
14 # Anzahl der Zusammenhangskomponenten
15 def count() -> int
G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 5/23
C3. Union-Find Union-Find
Quick-Find-Algorithmus
1 class QuickFind:
2 def __init__(self, no_nodes):
3 self.id = list(range(no_nodes))
4 self.components = no_nodes
5 K\\\\
6 def find(self, v): [0, 1, ..., no_nodes-1]
7 return self.id[v]
8
9 def union(self, v, w):
10 id_v = self.find(v)
11 id_w = self.find(w)
12 if id_v == id_w: # already <n same component
13 return
14 # replace all occurrences of wd_v in self.id with id_w
15 for i in range(len(self.id)):
16 if self.id[i] == id_v:
17 self.id[i] = id_w
18 self.components -= 1 # we merged two components
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 7 /23

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 6 /23
C3. Union-Find Union-Find
Quick-Find-Algorithmus (Fortsetzung)
20 def connected(self, v, w):
21 return self.find(v) == self.find(w)
22
23 def count(self):
24 return self.components
Aufwand?
» Kostenmodell = Anzahl Arrayzugriffe
» ein Arrayzugriff fiir jeden Aufruf von find
» zwischen n+ 3 und 2n + 1 Arrayzugriffe
fiir jeden Aufruf von union, der zwei Komponenten vereinigt
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 8 /23




C3. Union-Find Union-Find

Etwas besserer Algorithmus: Quick-Union

» (implizite) Baumstruktur zur Reprasentation jeder
Zusammenhangskomponente

» Reprasentiert durch Array mit Eintrag des Elternknotens
(Wurzel: Referenz auf sich selbst)

0123456 738

13[5]of3]6]5[3[6]5]

(5)

® @

» Wurzelknoten dient als Bezeichner der
Zusammenhangskomponente

G. Roéger (Universitit Basel) Algorithmen und Datenstrukturen 9 /23

C3. Union-Find Union-Find

Quick-Union-Algorithmus

C3. Union-Find Union-Find

Erste Verbesserung

» Problem bei Quick-Union: Bdume kdnnen zu Ketten entarten
— find bendtigt lineare Zeit in der Grosse der Komponente.

» Idee: Hange in union flacheren Baum an Wurzel
des tieferen Baums

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11 /23

1 class QuickUnion:

2 def __init__(self, no_nodes):

3 self .parent = list(range(no_nodes))

4 self.components = no_nodes

5

6 def find(self, v):

7 while self.parent[v] !'= v:

8 v = self.parent[v]

9 return v

10

11 def union(self, v, w):

12 id_v = self.find(v)

13 id_w = self.find(w)

14 if id_v == id_w: # already in same component

15 return

16 self.parent[id_v] = id_w

17 self.components -= 1

18

19 # connected und count wie bei QuickFind

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 10 / 23
C3. Union-Find Union-Find

Ranked-Quick-Union-Algorithmus

1 class RankedQuickUnion:

2 def __init__(self, no_nodes):

3 self .parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]
6

7 def union(self, v, w):

8 id_v = self.find(v)

9 id_w = self.find(w)

10 if id_v == id_w:

11 return

12 if self.rank[id_w] < self.rank[id_v]:

13 self .parent[id_w] = id_v

14 else:

15 self.parent[id_v] = id_w

16 if self.rank[id_v] == self.rank[id_w]:
17 self.rank[id_w] += 1

18 self.components -= 1

19

20 # connected, count und find wie bei QuickUnion

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12 /23




C3. Union-Find Union-Find

Zweite Verbesserung

Pfadkompression
> |dee: Hange in find alle traversierten Knoten direkt
an die Wurzel um

> Wir aktualisieren die Hohe des Baumes bei der
Pfadkompression nicht.
» Wert von rank kann von tatsichlicher Hohe abweichen.
» Deshalb heisst er auch Rang (rank) statt Hohe.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

C3. Union-Find Union-Find

Ranked-Quick-Union-Algorithmus mit Pfadkompression

C3. Union-Find

Diskussion

> Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten fiir alle Operationen
» Genauer: [Tarjan 1975]
» m Aufrufe von find bei n Objekten (und hochstens n — 1
Aufrufe von union, die zwei Komponenten vereinigen)
» O(ma(m,n)) Arrayzugriffe
> « ist Umkehrfunktion einer Variante der Ackermann-Funktion
» In der Praxis ist a(m, n) < 3.
» Trotzdem: es kann keinen Union-Find-Algorithmus geben,
der lineare Zeit garantieren kann.
(unter ,, Cell-Probe*-Berechnungsmodell)

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

1 class RankedQuickUnionWithPathCompression:

2 def __init__(self, no_nodes):

3 self .parent = list(range(no_nodes))

4 self.components = no_nodes

5 self.rank = [0] * no_nodes # [0, ..., 0]

6

7 def find(self, v):

8 if self.parent[v] == v:

9 return v

10 root = self.find(self.parent[v])

11 self.parent[v] = root

12 return root

13

14 # connected, count und union wie bei Ranked@uickUnion

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 14 / 23
C3. Union-Find Union-Find

Vergleich mit explorationsbasiertem Verfahren

> Kapitel C2: Algorithmus ConnectedComponents,
der auf Graphenexploration basiert
» Nach der Vorberechnung kosten Anfragen nur konstante Zeit.
» In der Praxis ist Union-Find meist schneller, da der Graph
fiir viele Zwecke nicht vollstandig aufgebaut werden muss.
» Ist der Graph schon aufgebaut, kann Graphenexploration
besser sein.
» Weiterer Vorteil von Union-Find

» Online-Verfahren
» problemloses Hinzufiigen weiterer Kanten

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16 / 23




C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

C3.2 Zusammenhangskomponenten
und Aquivalenzklassen

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 17 / 23

C3. Union-Find

Wiederholung: Zusammenhangskomponenten

Ungerichteter Graph

> Zwei Knoten u und v sind genau dann in der gleichen
Zusammenhangskomponente, wenn es einen Pfad
zwischen v und v gibt (= Knoten u und v verbunden sind).

()8
(5) (9)

(0)—(1)
oo
(4)

G. Roéger (Universitit Basel) Algorithmen und Datenstrukturen

18 /

Zusammenhangskomponenten und Aquivalenzklassen

23

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Zusammenhangskomponenten: Eigenschaften

» Die Zusammenhangskomponenten definieren eine
Partition der Knoten:
> Jeder Knoten ist in einer Zusammenhangskomponente.
> Kein Knoten ist in mehr als einer Zusammenhangskomponente.
» st verbunden mit" ist Aquivalenzrelation
> reflexiv: Jeder Knoten ist mit sich selbst verbunden.
» symmetrisch: Ist u mit v verbunden,
dann ist v mit u verbunden.
> transitiv: Ist u mit v verbunden und v mit w verbunden,
dann ist u mit w verbunden.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 19 /23

C3. Union-Find

Partition allgemein

Definition (Partition)
Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

> jedes Element von M in einer Menge in P vorkommt:
USGP S - M, Und

» die Mengen in P paarweise disjunkt sind:
SNS' =0 firS,S'ePmitS#S.

Die Mengen in P heissen Blocke.

> P = {{e1,e4},{e3},{e2, es5}} ist eine Partition von M.

» P, ={{e1, e, e5},{e3}} ist keine Partition von M.

» P3 = {{e1,e4,65},{e3},{e2, e5}} ist keine Partition von M.
» Py ={{ei},{e},{e3},{es},{es}} ist eine Partition von M.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

20

Zusammenhangskomponenten und Aquivalenzklassen

/ 23




C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Aquivalenzrelation allgemein

Definition (Aquivalenzrelation)

Eine Aquivalenzrelation auf einer Menge M ist eine
symmetrische, transitive und reflexive Relation R C M x M.
Wir schreiben a ~ b fiir (a, b) € R und sagen a ist dquivalent zu b.

> symmetrisch: a ~ b impliziert b ~ a
P transitiv: a ~ b und b ~ ¢ impliziert a ~ ¢

> reflexiv: fur alle e e M: e ~ e

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21 /23

C3. Union-Find

Aquivalenzklassen

Definition (Aquivalenzklassen)

Sei R eine Aquivalenzrelation auf der Menge M.
Die Aquivalenzklasse von a € M ist die Menge

[a] ={be M| a~ b}.

> Die Menge aller Aquivalenzklassen ist eine Partition von M.

> Umgekehrt:
Fiir Partition P definiere R = {(x,y) | 3B € P : x,y € B}
(also x ~ y genau dann, wenn x und y im gleichen Block).
Dann ist R eine Aquivalenzrelation.

» Konnen Partitionen als Aquivalenzklassen betrachten und
umgekehrt.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

22 /

Zusammenhangskomponenten und Aquivalenzklassen

23

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Union-Find und Aquivalenzen

» Gegeben: endliche Menge M,
Sequenz s von Aquivalenzen a ~ b iiber M

> Fasse Aquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.

» Die Zusammenhangskomponenten entsprechen den

Aquivalenzklassen der feinsten Aquivalenzrelation,
die alle Aquivalenzen aus s enthilt.

> keine ,,unndtigen” Aquivalenzen

Wir kénnen die Union-Find-Datenstruktur zur
Bestimmung der Aquivalenzklassen verwenden.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23 /23




	Union-Find
	

	Zusammenhangskomponenten und Äquivalenzklassen
	


