Algorithmen und Datenstrukturen
C3. Union-Find

Gabriele Roger

Universitat Basel

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 1/23

Algorithmen und Datenstrukturen
— C3. Union-Find

C3.1 Union-Find

(3.2 Zusammenhangskomponenten und
Aquivalenzklassen

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2/23

C3. Union-Find Union-Find

C3.1 Union-Find

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 3/23

C3. Union-Find Union-Find

Fragen

]
I I B
I

L]

] HATH

1R HEOH o

g g&
] I .

= AT P T
e e

Sind die roten Knoten verbunden?
Wie viele Zusammenhangskomponenten hat der Graph?

B
i
=1

Sespest
ﬁjH
?Lj E

ﬂ@%¢

ij
o

[

I

11

|]
|
3

T
I ae!

o

jisi=
H
g5

Sk

-

—

HHH

1]

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 4 /23

C3. Union-Find Union-Find

Union-Find-Datentyp

Konnen Frage mit Hilfe folgendem Datentyp beantworten:

1 class UnionFind:

2 # Inittalisiert n Knoten mit Namen 0, ..., n-1
3 def __init__(n: int) -> None

4

5 # Fugt Verbindung zwischen v und w hinzu
6 def union(v: int, w: int) -> None

7

8 # Komponentenbezeichner fur v

9 def find(v: int) -> int

10

11 # Sind v und w verbunden?

12 def connected(v: int, w: int) -> bool

13

14 # Anzahl der Zusammenhangskomponenten

15 def count() -> int

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 5 /23

C3. Union-Find

(Etwas) naiver Algorithmus: Quick-Find

G. Roger

Fiir n Knoten: Array id der Lange n

Eintrag an Stelle / ist Bezeichner der
Zusammenhangskomponente, in der Knoten i liegt.

Anfanglich liegt jeder Knoten (alleine) in seiner eigenen
Zusammenhangskomponente (insgesamt n Stiick).

Aktualisiere das Array bei jedem Aufruf von union.

(Universitit Basel) Algorithmen und Datenstrukturen

Union-Find

C3. Union-Find Union-Find

Quick-Find-Algorithmus

1 class QuickFind:

2 def __init__(self, no_nodes):

3 self.id = list(range(no_nodes))

4 self.components = no_nodes

5 K\\\\

6 def find(self, v): [0, 1, ..., no,nodes—l]
7 return self.id[v]

8

9 def union(self, v, w):

10 id_v = self.find(v)

11 id_w = self.find(w)

12 if id_v == id_w: # already in same component

13 return

14 # replace all occurrences of 2d_v in self.id with id_w
15 for i in range(len(self.id)):

16 if self.id[i] == id_v:

17 self.id[i] = id_w

18 self.components -= 1 # we merged two components

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 7/23

C3. Union-Find Union-Find

Quick-Find-Algorithmus (Fortsetzung)

20 def connected(self, v, w):
21 return self.find(v) == self.find(w)
22
23 def count(self):
24 return self.components
Aufwand?

» Kostenmodell = Anzahl Arrayzugriffe
> ein Arrayzugriff fiir jeden Aufruf von find

» zwischen n+ 3 und 2n + 1 Arrayzugriffe
fiir jeden Aufruf von union, der zwei Komponenten vereinigt

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

/23

C3. Union-Find

Etwas besserer Algorithmus: Quick-Union

» (implizite) Baumstruktur zur Représentation jeder
Zusammenhangskomponente

P Reprasentiert durch Array mit Eintrag des Elternknotens
(Wurzel: Referenz auf sich selbst)

0123456738
31s]o]3]6[5]3]6]5]

AW/

» Wurzelknoten dient als Bezeichner der
Zusammenhangskomponente

©),

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

Union-Find

23

C3. Union-Find Union-Find

Quick-Union-Algorithmus

1 class QuickUnion:

2 def __init__(self, no_nodes):

3 self.parent = list(range(no_nodes))
4 self.components = no_nodes

5

6 def find(self, v):

7 while self.parent[v] != v:

8 v = self.parent[v]

9 return v

10

11 def union(self, v, w):

12 id_v = self.find(v)

13 id_w = self.find(w)

14 if id_v == id_w: # already in same component
15 return

16 self .parent[id_v] = id_w

17 self.components -= 1

18

19 # connected und count wie betr QuickFind

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 10 / 23

C3. Union-Find Union-Find

Erste Verbesserung

» Problem bei Quick-Union: Baume kdnnen zu Ketten entarten
— find bendtigt lineare Zeit in der Grosse der Komponente.

» Idee: Hange in union flacheren Baum an Wurzel
des tieferen Baums

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 11 /23

C3. Union-Find

Ranked-Quick-Union-Algorithmus

Union-Find

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

def

def

class RankedQuickUnion:

__init__(self, no_nodes):

self.parent = list(range(no_nodes))
self.components = no_nodes

self.rank = [0] * no_nodes # [0, ..., 0]

union(self, v, w):

id_v = self.find(v)

id_w = self.find(w)

if id_v == id_w:
return

if self.rank[id_w] < self.rank[id_v]:
self .parent[id_w] = id_v

else:
self.parent[id_v] = id_w

if self.rank[id_v] == self.rank[id_w]:

self .rank[id_w] += 1
self.components -= 1

connected, count und find wie bei QuickUnion

G. Réger (Universitat Basel)

Algorithmen und Datenstrukturen

12 /23

C3. Union-Find Union-Find

Zweite Verbesserung

Pfadkompression
P Idee: Hange in find alle traversierten Knoten direkt
an die Wurzel um
P> Wir aktualisieren die Hohe des Baumes bei der
Pfadkompression nicht.
» Wert von rank kann von tatsichlicher Hohe abweichen.
» Deshalb heisst er auch Rang (rank) statt Hohe.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 13 /23

C3. Union-Find

Union-Find

Ranked-Quick-Union-Algorithmus mit Pfadkompression

1
2
3
4
5
6
7
8
9

10
11
12
13
14

def

def

connected,

class RankedQuickUnionWithPathCompression:

__init__(self, no_nodes):
self.parent = list(range(no_nodes))
self.components = no_nodes
self.rank = [0] * no_nodes # [0,

find(self, v):
if self.parent[v] == v:
return v
root = self.find(self.parent[v])
self.parent[v] = root
return root

)

count und union wie bei RankedluickUnion

G. Réger (Universitat Basel)

Algorithmen und Datenstrukturen

14 /23

C3. Union-Find

Diskussion

> Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten fiir alle Operationen
» Genauer: [Tarjan 1975]
» m Aufrufe von find bei n Objekten (und hdchstens n —1
Aufrufe von union, die zwei Komponenten vereinigen)
» O(ma(m, n)) Arrayzugriffe
» « ist Umkehrfunktion einer Variante der Ackermann-Funktion
» In der Praxis ist a(m, n) < 3.
> Trotzdem: es kann keinen Union-Find-Algorithmus geben,
der lineare Zeit garantieren kann.
(unter ,,Cell-Probe"-Berechnungsmodell)

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

15

Union-Find

23

C3. Union-Find

Union-Find

Vergleich mit explorationsbasiertem Verfahren

G. Roger

Kapitel C2: Algorithmus ConnectedComponents,
der auf Graphenexploration basiert

Nach der Vorberechnung kosten Anfragen nur konstante Zeit.
In der Praxis ist Union-Find meist schneller, da der Graph

fiir viele Zwecke nicht vollstandig aufgebaut werden muss.

Ist der Graph schon aufgebaut, kann Graphenexploration
besser sein.

Weiterer Vorteil von Union-Find

» Online-Verfahren
» problemloses Hinzufiigen weiterer Kanten

(Universitit Basel) Algorithmen und Datenstrukturen

16 /

23

C3.2 Zusammenhangskomponenten
und Aquivalenzklassen

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

17 / 23

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Wiederholung: Zusammenhangskomponenten

Ungerichteter Graph

» Zwei Knoten u und v sind genau dann in der gleichen
Zusammenhangskomponente, wenn es einen Pfad
zwischen u und v gibt (= Knoten u und v verbunden sind).

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18 / 23

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Zusammenhangskomponenten: Eigenschaften

» Die Zusammenhangskomponenten definieren eine
Partition der Knoten:
» Jeder Knoten ist in einer Zusammenhangskomponente.
P Kein Knoten ist in mehr als einer Zusammenhangskomponente.
» | ist verbunden mit" ist Aquivalenzrelation
P reflexiv: Jeder Knoten ist mit sich selbst verbunden.
» symmetrisch: Ist u mit v verbunden,
dann ist v mit u verbunden.
P> transitiv: Ist u mit v verbunden und v mit w verbunden,
dann ist u mit w verbunden.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 19

/ 23

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Partition allgemein

Definition (Partition)
Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

» jedes Element von M in einer Menge in P vorkommt:
USEP S = M, Und

» die Mengen in P paarweise disjunkt sind:
SNS =0firS,SePmitS+#S.
Die Mengen in P heissen Blocke.
M={ei,...,es}
» P = {{e1,es}, {e3}, {e2, e5}} ist eine Partition von M.
» P, = {{e1, e, e5},{e3}} ist keine Partition von M.
» P3={{e,es,e5},{e3},{e, e5}} ist keine Partition von M.
» Py ={{er},{ex},{e3},{es},{es}} ist eine Partition von M.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 20 /23

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Aquivalenzrelation allgemein

Definition (Aquivalenzrelation)

Eine Aquivalenzrelation auf einer Menge M ist eine
symmetrische, transitive und reflexive Relation R C M x M.

Wir schreiben a ~ b fiir (a, b) € R und sagen a ist dquivalent zu b.

» symmetrisch: a ~ b impliziert b ~ a
P transitiv: a ~ b und b ~ ¢ impliziert a ~ ¢

> reflexiv: fir alle e € M: e~ e

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

21/

23

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Aquivalenzklassen

Definition (Aquivalenzklassen)

Sei R eine Aquivalenzrelation auf der Menge M.
Die Aquivalenzklasse von a € M ist die Menge

[a] ={be M |a~ b}.

> Die Menge aller Aquivalenzklassen ist eine Partition von M.

> Umgekehrt:
Fiir Partition P definiere R = {(x.y) | 3B € P:x,y € B}
(also x ~ y genau dann, wenn x und y im gleichen Block).
Dann ist R eine Aquivalenzrelation.

» Konnen Partitionen als Aquivalenzklassen betrachten und
umgekehrt.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

22 /23

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Union-Find und Aquivalenzen

> Gegeben: endliche Menge M,
Sequenz s von Aquivalenzen a ~ b iiber M
> Fasse Aquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.
» Die Zusammenhangskomponenten entsprechen den

Aquivalenzklassen der feinsten Aquivalenzrelation,
die alle Aquivalenzen aus s enthilt.

P keine ,, unndtigen” Aquivalenzen

Wir konnen die Union-Find-Datenstruktur zur
Bestimmung der Aquivalenzklassen verwenden.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

23 /

23

	Union-Find
	

	Zusammenhangskomponenten und Äquivalenzklassen
	

