
Algorithmen und Datenstrukturen
C2. Graphenexploration: Anwendungen

Gabriele Röger

Universität Basel



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Erinnerung: Graphenexploration

Aufgabe: Gegeben einen Knoten v , besuche alle Knoten, die
von v aus erreichbar sind.

Wird oft als Teil anderer Graphenalgorithmen benötigt.

Tiefensuche: erst einmal möglichst tief in den Graphen
(weit weg von v)

Breitensuche: erst alle Nachbarn, dann Nachbarn der
Nachbarn, . . .



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Erreichbarkeit



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Mark-and-Sweep-Speicherbereinigung

Ziel: Gib Speicherplatz frei, der von nicht mehr zugreifbaren
Ziel: Objekten belegt wird.

Gerichteter Graph: Objekte als Knoten,
Referenzen auf Objekte als Kanten

Ein Bit pro Objekt für Markierung in Speicherbereinigung

Mark: Markiere in regelmässigen Abständen alle erreichbaren
Objekte.

Sweep: Gib alle nicht markierten Objekte frei.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zauberstab in Bildbearbeitung



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Kürzeste Pfade



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Kürzeste Pfade: Idee

Breitensuche besucht die Knoten mit aufsteigendem
(minimalen) Abstand vom Startknoten.

Erster Besuch eines Knoten passiert auf kürzestem Pfad.

Idee: Verwende Pfad aus induzierten Suchbaum



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Jupyter-Notebook

Jupyter-Notebook: graph exploration applications.ipynb



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Kürzeste-Pfade-Problem

Kürzeste-Pfade-Problem mit einem Startknoten

Gegeben: Graph und Startknoten s

Anfrage für Knoten v

Gibt es Pfad von s nach v?
Wenn ja, was ist der kürzeste Pfad?

Engl. single-source shortest paths, SSSP



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Kürzeste Pfade: Algorithmus

1 class SingleSourceShortestPaths:

2 def __init__(self, graph, start_node):

3 self.predecessor = [None] * graph.no_nodes()

4 self.predecessor[start_node] = start_node

5

6 # precompute predecessors with breadth-first search with

7 # self.predecessors used for detecting visited nodes

8 queue = deque()

9 queue.append(start_node)

10 while queue:

11 v = queue.popleft()

12 for s in graph.successors(v):

13 if self.predecessor[s] is None:

14 self.predecessor[s] = v

15 queue.append(s)

16 ...

Im Prinzip wie gehabt
(nur als Klasse)



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Kürzeste Pfade: Algorithmus (Fortsetzung)

19 def has_path_to(self, node):

20 return self.predecessor[node] is not None

21

22 def get_path_to(self, node):

23 if not self.has_path_to(node):

24 return None

25 if self.predecessor[node] == node: # start node

26 return [node]

27 pre = self.predecessor[node]

28 path = self.get_path_to(pre)

29 path.append(node)

30 return path

Laufzeit?

Später: Kürzeste Pfade mit Kantengewichten



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Azyklische Graphen



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Erkennung von azyklischen Graphen

Definition (Gerichteter, azyklischer Graph)

Ein gerichteter, azyklischer Graph (directed acyclic graph, DAG)
ist ein gerichteter Graph, der keine gerichteten Zyklen enthält.

Aufgabe: Entscheide, ob ein gerichteter Graph
Aufgabe: einen Zyklus enthält. Falls ja, gib einen Zyklus aus.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Erkennung von azyklischen Graphen

Definition (Gerichteter, azyklischer Graph)

Ein gerichteter, azyklischer Graph (directed acyclic graph, DAG)
ist ein gerichteter Graph, der keine gerichteten Zyklen enthält.

Aufgabe: Entscheide, ob ein gerichteter Graph
Aufgabe: einen Zyklus enthält. Falls ja, gib einen Zyklus aus.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Kriterium für Zykelfreiheit
vo

rw
är

ts

rü
ck

w
är

ts

seitwärts

Induzierter Suchbaum einer
Tiefensuche (orange) und
mögliche andere Kanten

Der (erreichbare Teil-) Graph
ist genau dann azyklisch, wenn
keine Rückwärtskante existiert.

Idee: Merke dir Knoten auf aktuellem Pfad in Tiefensuche



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Kriterium für Zykelfreiheit
vo

rw
är

ts

rü
ck

w
är

ts

seitwärts

Induzierter Suchbaum einer
Tiefensuche (orange) und
mögliche andere Kanten

Der (erreichbare Teil-) Graph
ist genau dann azyklisch, wenn
keine Rückwärtskante existiert.

Idee: Merke dir Knoten auf aktuellem Pfad in Tiefensuche



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Kriterium für Zykelfreiheit
vo

rw
är

ts

rü
ck

w
är

ts

seitwärts

Induzierter Suchbaum einer
Tiefensuche (orange) und
mögliche andere Kanten

Der (erreichbare Teil-) Graph
ist genau dann azyklisch, wenn
keine Rückwärtskante existiert.

Idee: Merke dir Knoten auf aktuellem Pfad in Tiefensuche



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zykeltest: Algorithmus

1 class DirectedCycle:

2 def __init__(self, graph):

3 self.predecessor = [None] * graph.no_nodes()

4 self.on_current_path = [False] * graph.no_nodes()

5 self.cycle = None

6 for node in range(graph.no_nodes()):

7 if self.has_cycle():

8 break

9 if self.predecessor[node] is None:

10 self.predecessor[node] = node

11 self.dfs(graph, node)

12

13 def has_cycle(self):

14 return self.cycle is not None

Wiederholte Tiefen-
suchen, so dass am
Ende alle Knoten
besucht wurden



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]:

22 self.predecessor[s] = node

23 self.extract_cycle(s)

24 if self.predecessor[s] is None:

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Aktualisiere, ob
Knoten auf aktuellem
Pfad ist.

Brich ab, wenn
irgendwo Zyklus
gefunden.

Zyklus
gefunden



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]:

22 self.predecessor[s] = node

23 self.extract_cycle(s)

24 if self.predecessor[s] is None:

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Aktualisiere, ob
Knoten auf aktuellem
Pfad ist.

Brich ab, wenn
irgendwo Zyklus
gefunden.

Zyklus
gefunden



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]:

22 self.predecessor[s] = node

23 self.extract_cycle(s)

24 if self.predecessor[s] is None:

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Aktualisiere, ob
Knoten auf aktuellem
Pfad ist.

Brich ab, wenn
irgendwo Zyklus
gefunden.

Zyklus
gefunden



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]:

22 self.predecessor[s] = node

23 self.extract_cycle(s)

24 if self.predecessor[s] is None:

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Aktualisiere, ob
Knoten auf aktuellem
Pfad ist.

Brich ab, wenn
irgendwo Zyklus
gefunden.

Zyklus
gefunden



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zykeltest: Algorithmus (Fortsetzung)

Bei Aufruf von extract cycle liegt node auf einem Zyklus in
self.predecessor.

29 def extract_cycle(self, node):

30 self.cycle = deque()

31 current = node

32 self.cycle.appendleft(current)

33 while True:

34 current = self.predecessor[current]

35 self.cycle.appendleft(current)

36 if current == node:

37 return



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Jupyter-Notebook

Jupyter-Notebook: graph exploration applications.ipynb



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Topologische Sortierung

Definition

Eine topologische Sortierung eines azyklischen, gerichteten
Graphen G = (V ,E ), ist eine Nummerierung no : V → N der
Knoten, so dass für jede Kante (u, v) gilt, dass no(u) < no(v).

Zum Beispiel relevant für Ablaufplanung:
Kante (u, v) drückt aus, dass u vor v

”
erledigt“ werden muss.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Topologische Sortierung: Illustration

0

1

2

3

4

56

4

6

1

3

0

2

5

1

2

3

4

5

6

7



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Topologische Sortierung: Algorithmus

Theorem

Für den erreichbaren Teilgraphen eines azyklischenen Graphen ist
die umgekehrte Depth-First-Postorder-Knotenreihenfolge eine
topologische Sortierung.

Algorithmus:

Folge von Tiefensuchen-Aufrufen (für bisher unbesuchte
Knoten) bis alle Knoten besucht.

Speichere jeweils umgekehrte Postorderreihenfolge
Pi für i-te Suche

Sei k Anzahl der Suchen. Dann ergibt die Aneinanderreihung
von Pk , . . . ,P1 eine topologische Sortierung.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenhang



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenhangskomponenten ungerichteter Graphen

Ungerichteter Graph

Zwei Knoten u und v sind in der gleichen
Zusammenhangskomponente, wenn
es einen Pfad zwischen u und v gibt.

0 1

2 3

4
5

6

7 8

9



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenhangskomponenten: Interface

Wir möchten folgendes Interface implementieren:

1 class ConnectedComponents:

2 # Vorverarbeitender Konstruktor

3 def __init__(graph: UndirectedGraph) -> None

4

5 # Sind Knoten node1 und node2 verbunden?

6 def connected(node1: int, node2: int) -> bool

7

8 # Anzahl der Zusammenhangskomponenten

9 def count() -> int

10

11 # Komponentenbezeichner für node

12 # (zwischen 0 und count()-1)

13 def id(node: int) -> int

Idee: Folge von Graphexplorationen bis alle Knoten besucht sind.
Idee: ID eines Knoten entspricht Iteration, in der er besucht wurde



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenhangskomponenten: Interface

Wir möchten folgendes Interface implementieren:

1 class ConnectedComponents:

2 # Vorverarbeitender Konstruktor

3 def __init__(graph: UndirectedGraph) -> None

4

5 # Sind Knoten node1 und node2 verbunden?

6 def connected(node1: int, node2: int) -> bool

7

8 # Anzahl der Zusammenhangskomponenten

9 def count() -> int

10

11 # Komponentenbezeichner für node

12 # (zwischen 0 und count()-1)

13 def id(node: int) -> int

Idee: Folge von Graphexplorationen bis alle Knoten besucht sind.
Idee: ID eines Knoten entspricht Iteration, in der er besucht wurde



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenhangskomponenten: Algorithmus

1 class ConnectedComponents:

2 def __init__(self, graph):

3 self.id = [None] * graph.no_nodes()

4 self.curr_id = 0

5 visited = [False] * graph.no_nodes()

6 for node in range(graph.no_nodes()):

7 if not visited[node]:

8 self.dfs(graph, node, visited)

9 self.curr_id += 1

10

11 def dfs(self, graph, node, visited):

12 if visited[node]:

13 return

14 visited[node] = True

15 self.id[node] = self.curr_id

16 for n in graph.neighbours(node):

17 self.dfs(graph, n, visited)

Wie sehen connected, count und id aus?



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Jupyter-Notebook

Jupyter-Notebook: graph exploration applications.ipynb



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G .

G ist stark zusammenhängend, wenn von jedem Knoten zu
jedem anderen Knoten ein gerichteter Pfad existiert.

Eine starke Zusammenhangskomponente von G ist ein
maximal grosser Teilgraph, der stark zusammenhängend ist.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G .

G ist stark zusammenhängend, wenn von jedem Knoten zu
jedem anderen Knoten ein gerichteter Pfad existiert.

Eine starke Zusammenhangskomponente von G ist ein
maximal grosser Teilgraph, der stark zusammenhängend ist.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G .

G ist stark zusammenhängend, wenn von jedem Knoten zu
jedem anderen Knoten ein gerichteter Pfad existiert.

Eine starke Zusammenhangskomponente von G ist ein
maximal grosser Teilgraph, der stark zusammenhängend ist.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Starke Zusammenhangskomponenten

0 1

2 3

4
5

6

7 8

9



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Starke Zusammenhangskomponenten

0 1

2 3

4
5

6

7 8

9



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Starke Zusammenhangskomponenten

Kosaraju-Algorithmus

Gegeben Graph G = (V ,E ), berechne zunächst ein
umgekehrte Postorderreihenfolge P (für alle Knoten) des
Graphen GR = (V , {(v , u) | (u, v) ∈ E}) (alle Kanten
umgedreht).

Führe eine Folge von Explorationen in G aus.
Wähle dabei als nächsten Startknoten jeweils den
ersten noch unbesuchten Knoten in P.

Alle Knoten, die innerhalb einer Exploration erreicht werden,
sind in der gleichen starken Zusammenhangskomponente.



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Jupyter-Notebook

Jupyter-Notebook: graph exploration applications.ipynb



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenfassung



Erreichbarkeit Kürzeste Pfade Azyklische Graphen Zusammenhang Zusammenfassung

Zusammenfassung

Wir haben eine Reihe von Anwendungen der Graphenexploration
betrachtet:

Erreichbarkeit

Kürzeste Pfade

Zykelerkennung

Topologische Sortierung

Zusammenhangskomponenten


	Erreichbarkeit
	

	Kürzeste Pfade
	

	Azyklische Graphen
	

	Zusammenhang
	

	Zusammenfassung
	


