Algorithmen und Datenstrukturen

C2. Graphenexploration: Anwendungen

Gabriele Roger

Universitat Basel

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 1/39

Algorithmen und Datenstrukturen

— C2. Graphenexploration: Anwendungen

C2.1 Erreichbarkeit

C2.2 Kiirzeste Pfade
C2.3 Azyklische Graphen
C2.4 Zusammenhang

C2.5 Zusammenfassung

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2 /39

Erinnerung: Graphenexploration

> Aufgabe: Gegeben einen Knoten v, besuche alle Knoten, die
von v aus erreichbar sind.

» Wird oft als Teil anderer Graphenalgorithmen bendétigt.

P> Tiefensuche: erst einmal moglichst tief in den Graphen
(weit weg von v)

» Breitensuche: erst alle Nachbarn, dann Nachbarn der
Nachbarn, . ..

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

39

Graphen: Ubersicht

G. Réger (Universitiat Basel)

Reprasentation

—| Erreichbarkeit

Exploration

Kiirzeste
Pfade

~| Zykelerkennung

Minimale || Topologische
Spannb3ume Sortierung
i Kiirzeste | Zusammenhangs-
Pfade komponenten
| Andere
Graphenprobleme

Algorithmen und Datenstrukturen

4 /39

C2. Graphenexploration: Anwendungen Erreichbarkeit

C2.1 Erreichbarkeit

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 5 /39

C2. Graphenexploration: Anwendungen

Graphen: Ubersicht

G. Réger (Universitiat Basel)

Reprasentation

Exploration

Kiirzeste
Pfade

~| Zykelerkennung

Minimale || Topologische
Spannb3ume Sortierung
i Kiirzeste | Zusammenhangs-
Pfade komponenten
| Andere
Graphenprobleme

Algorithmen und Datenstrukturen

Erreichbarkeit

6 /39

Erreichbarkeit

C2. Graphenexploration: Anwendungen

Mark-and-Sweep-Speicherbereinigung

Ziel: Gib Speicherplatz frei, der von nicht mehr zugreifbaren
Objekten belegt wird.

» Gerichteter Graph: Objekte als Knoten,
Referenzen auf Objekte als Kanten

» Ein Bit pro Objekt fiir Markierung in Speicherbereinigung

> Mark: Markiere in regelméssigen Abstanden alle erreichbaren
Objekte.

> Sweep: Gib alle nicht markierten Objekte frei.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

/39

C2. Graphenexploration: Anwendungen

Zauberstab in Bildbearbeitung

Erreichbarkeit

G. Réger (Universitat Basel)

Algorithmen und Datenstrukturen

Toolbox - Tool Options

¥ Tool Options

Fuzzy Select

[Mode: | & ;@
Antialiasing
Feather edges
Select transparent areas
sample merged

C2. Graphenexploration: Anwendungen Kiirzeste Pfade

C2.2 Kiirzeste Pfade

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 9 /39

C2. Graphenexploration: Anwendungen Kiirzeste Pfade

Graphen: Ubersicht

Reprasentation —| Erreichbarkeit |

Minimale || Topologische
Spannb3ume Sortierung
i Kiirzeste | Zusammenhangs-
Pfade komponenten
| Andere
Graphenprobleme

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 10 / 39

C2. Graphenexploration: Anwendungen Kiirzeste Pfade

Kirzeste Pfade: Idee

» Breitensuche besucht die Knoten mit aufsteigendem
(minimalen) Abstand vom Startknoten.

» Erster Besuch eines Knoten passiert auf kiirzestem Pfad.

» |dee: Verwende Pfad aus induzierten Suchbaum

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 11

39

C2. Graphenexploration: Anwendungen Kiirzeste Pfade

Jupyter-Notebook

L
_
Jupyter
o

Jupyter-Notebook: graph_exploration_applications.ipynb

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 12 / 39

C2. Graphenexploration: Anwendungen Kiirzeste Pfade

Kiirzeste-Pfade-Problem

Kiirzeste-Pfade-Problem mit einem Startknoten

» Gegeben: Graph und Startknoten s
> Anfrage fiir Knoten v

> Gibt es Pfad von s nach v?
» Wenn ja, was ist der kiirzeste Pfad?

» Engl. single-source shortest paths, SSSP

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 13/

39

C2. Graphenexploration: Anwendungen

Kiirzeste Pfade: Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

def

class SingleSourceShortestPaths:

__init__(self, graph, start_node):
self .predecessor = [None] * graph.no_nodes()
self .predecessor[start_node] = start_node

precompute predecessors with breadth-first search with
self.predecessors used for detecting vistited nodes
queue = deque()
queue . append (start_node)
while queue: o .
v = queue.popleft() Im Prinzip wie gehabt
for s in graph.successors(v): (nur aIsI(Iasse)
if self.predecessor[s] is None:
self.predecessor[s] = v
queue . append (s)

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

Kiirzeste Pfade

14 / 39

C2. Graphenexploration: Anwendungen Kiirzeste Pfade

Kiirzeste Pfade: Algorithmus (Fortsetzung)

19 def has_path_to(self, node):
20 return self.predecessor[node] is not None
21
22 def get_path_to(self, node):
23 if not self.has_path_to(node):
24 return None
25 if self.predecessor[node] == node: # start node
26 return [node]
27 pre = self.predecessor[nodel
28 path = self.get_path_to(pre)
29 path.append (node)
30 return path
Laufzeit?

Spater: Kiirzeste Pfade mit Kantengewichten

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 15 / 39

C2. Graphenexploration: Anwendungen Azyklische Graphen

C2.3 Azyklische Graphen

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 16 / 39

C2. Graphenexploration: Anwendungen

Graphen: Ubersicht

G. Réger (Universitiat Basel)

Reprasentation

—| Erreichbarkeit

Exploration - Kiirzeste
Pfade
Minimale Topologische
Spannb3ume Sortierung
Kiirzeste | Zusammenhangs-
Pfade komponenten
Andere

| Graphenprobleme

Algorithmen und Datenstrukturen

Azyklische Graphen

17 / 39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Erkennung von azyklischen Graphen

Definition (Gerichteter, azyklischer Graph)

Ein gerichteter, azyklischer Graph (directed acyclic graph, DAG)
ist ein gerichteter Graph, der keine gerichteten Zyklen enthilt.

Aufgabe: Entscheide, ob ein gerichteter Graph
einen Zyklus enthalt. Falls ja, gib einen Zyklus aus.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

18 / 39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Kriterium fiir Zykelfreiheit

Induzierter Suchbaum einer
Tiefensuche (orange) und
mogliche andere Kanten

Der (erreichbare Teil-) Graph
ist genau dann azyklisch, wenn
keine Riickwartskante existiert.

Idee: Merke dir Knoten auf aktuellem Pfad in Tiefensuche

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 19 / 39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Zykeltest: Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12
13
14

class DirectedCycle:

def

def

__init__(self, graph):
self .predecessor = [None] * graph.no_nodes()
self.on_current_path = [False] * graph.no_nodes()
self.cycle = None
for node in range(graph.no_nodes()):
if self.has_cycle():
break
if self.predecessor[node] is None:
self.predecessor[node] = node
self.dfs(graph, node) ~.
Wiederholte Tiefen-

suchen, so dass am
Ende alle Knoten
besucht wurden

has_cycle(self):
return self.cycle is not None

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 20 / 39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node): Brich ab, wenn

17 self.on_current_path[node] = True irgendwo Zyklus

18 for s in graph.successors(node) : gefunden.

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]: Aktualisiere. ob

22 Zyklus 7 self .predecessor[s] = node K ’
noten auf aktuellem

23 gefunden self .extract_cycle(s) ;

24 if self.predecessor([s] is None: Pfad ist.

25 self .predecessor[s] = node

26 self .dfs(graph, s)

27 self.on_current_path[node] = False

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 21 /39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Zykeltest: Algorithmus (Fortsetzung)

Bei Aufruf von extract_cycle liegt node auf einem Zyklus in
self .predecessor.

29 def extract_cycle(self, node):

30 self.cycle = deque()

31 current = node

32 self.cycle.appendleft(current)

33 while True:

34 current = self.predecessor[current]
35 self.cycle.appendleft (current)

36 if current == node:

37 return

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 22 /39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Jupyter-Notebook

L
_
Jupyter
o

Jupyter-Notebook: graph_exploration_applications.ipynb

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 23 /39

C2. Graphenexploration: Anwendungen

Graphen: Ubersicht

Reprasentation

—| Erreichbarkeit

Exploration || Kiirzeste
Pfade
*I Zykelerkennung
Minimale
Spannbiume
Kiirzeste | Zusammenhangs-
Pfade komponenten
Andere

| Graphenprobleme

G. Réger (Universitiat Basel)

Algorithmen und Datenstrukturen

Azyklische Graphen

24 / 39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Topologische Sortierung

Definition

Eine topologische Sortierung eines azyklischen, gerichteten
Graphen G = (V/, E), ist eine Nummerierung no: V — N der
Knoten, so dass fiir jede Kante (u, v) gilt, dass no(u) < no(v).

Zum Beispiel relevant fiir Ablaufplanung:
Kante (u, v) driickt aus, dass u vor v ,erledigt” werden muss.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 25 /39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Topologische Sortierung: lllustration

G 1@
N w

(o)}

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 26 / 39

C2. Graphenexploration: Anwendungen Azyklische Graphen

Topologische Sortierung: Algorithmus

Theorem

Fiir den erreichbaren Teilgraphen eines azyklischenen Graphen ist
die umgekehrte Depth-First-Postorder-Knotenreihenfolge eine
topologische Sortierung.

Algorithmus:

» Folge von Tiefensuchen-Aufrufen (fiir bisher unbesuchte
Knoten) bis alle Knoten besucht.

» Speichere jeweils umgekehrte Postorderreihenfolge
P; fiir i-te Suche

» Sei k Anzahl der Suchen. Dann ergibt die Aneinanderreihung
von Py, ..., Py eine topologische Sortierung.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 27 / 39

C2. Graphenexploration: Anwendungen Zusammenhang

C2.4 Zusammenhang

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 28 / 39

C2. Graphenexploration: Anwendungen

Graphen: Ubersicht

Reprasentation

—| Erreichbarkeit

Exploration

Kiirzeste
Pfade

~| Zykelerkennung |

Minimale
Spannbdume

Topologische
Sortierung

Kiirzeste
Pfade

| Andere
Graphenprobleme

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

Zusammenhang

29 / 39

C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten ungerichteter Graphen

Ungerichteter Graph

> Zwei Knoten u und v sind in der gleichen
Zusammenhangskomponente, wenn
es einen Pfad zwischen u und v gibt.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 30 / 39

C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten: Interface

Wir mochten folgendes Interface implementieren:

class ConnectedComponents:
Vorverarbeitender Konstruktor
def __init__(graph: UndirectedGraph) -> None

def connected(nodel: int, node2: int) -> bool

1
2
3
4
5 # Sind Knoten nodel und node2 verbunden?
6
7
8 # Anzahl der Zusammenhangskomponenten

9 def count() -> int

11 # Komponentenbezeichner fir node

12 # (zwischen 0 und count()-1)

13 def id(node: int) -> int

Idee: Folge von Graphexplorationen bis alle Knoten besucht sind.
ID eines Knoten entspricht lteration, in der er besucht wurde

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 31 /39

C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten: Algorithmus

1 class ConnectedComponents:

2 def __init__(self, graph):

3 self.id = [None] * graph.no_nodes()

4 self.curr_id = 0

5 visited = [False] * graph.no_nodes()

6 for node in range(graph.no_nodes()):

7 if not visited[node]:

8 self .dfs(graph, node, visited)
9 self.curr_id += 1

10
11 def dfs(self, graph, node, visited):
12 if visited[node]:

13 return

14 visited[node] = True

15 self.id[node] = self.curr_id

16 for n in graph.neighbours(node):
17 self .dfs(graph, n, visited)

Wie sehen connected, count und id aus?

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 32 /39

C2. Graphenexploration: Anwendungen Zusammenhang

Jupyter-Notebook

L
_
Jupyter
o

Jupyter-Notebook: graph_exploration_applications.ipynb

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 33 /39

C2. Graphenexploration: Anwendungen

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

P Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G.

P G ist stark zusammenhdngend, wenn von jedem Knoten zu
jedem anderen Knoten ein gerichteter Pfad existiert.

» Eine starke Zusammenhangskomponente von G ist ein
maximal grosser Teilgraph, der stark zusammenhangend ist.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

Zusammenhang

34 /39

C2. Graphenexploration: Anwendungen

Starke Zusammenhangskomponenten

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenhang

35 / 39

C2. Graphenexploration: Anwendungen Zusammenhang

Starke Zusammenhangskomponenten

Kosaraju-Algorithmus

» Gegeben Graph G = (V, E), berechne zunichst ein
umgekehrte Postorderreihenfolge P (fiir alle Knoten) des
Graphen GR = (V,{(v,u) | (u,v) € E}) (alle Kanten
umgedreht).

» Fiihre eine Folge von Explorationen in G aus.

Wihle dabei als nachsten Startknoten jeweils den
ersten noch unbesuchten Knoten in P.

» Alle Knoten, die innerhalb einer Exploration erreicht werden,

sind in der gleichen starken Zusammenhangskomponente.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 36

39

C2. Graphenexploration: Anwendungen Zusammenhang

Jupyter-Notebook

L
_
Jupyter
o

Jupyter-Notebook: graph_exploration_applications.ipynb

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 37 /39

C2. Graphenexploration: Anwendungen Zusammenfassung

C2.5 Zusammenfassung

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 38 /39

C2. Graphenexploration: Anwendungen Zusammenfassung

Zusammenfassung

Wir haben eine Reihe von Anwendungen der Graphenexploration
betrachtet:

» Erreichbarkeit
Kirzeste Pfade

>

» Zykelerkennung

» Topologische Sortierung
>

Zusammenhangskomponenten

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 39 /39

	Erreichbarkeit
	

	Kürzeste Pfade
	

	Azyklische Graphen
	

	Zusammenhang
	

	Zusammenfassung
	

