
Algorithmen und Datenstrukturen
C2. Graphenexploration: Anwendungen

Gabriele Röger

Universität Basel

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 39



Algorithmen und Datenstrukturen
— C2. Graphenexploration: Anwendungen

C2.1 Erreichbarkeit

C2.2 Kürzeste Pfade

C2.3 Azyklische Graphen

C2.4 Zusammenhang

C2.5 Zusammenfassung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 39



Erinnerung: Graphenexploration

I Aufgabe: Gegeben einen Knoten v , besuche alle Knoten, die
von v aus erreichbar sind.

I Wird oft als Teil anderer Graphenalgorithmen benötigt.

I Tiefensuche: erst einmal möglichst tief in den Graphen
(weit weg von v)

I Breitensuche: erst alle Nachbarn, dann Nachbarn der
Nachbarn, . . .

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 39



Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 39



C2. Graphenexploration: Anwendungen Erreichbarkeit

C2.1 Erreichbarkeit

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 39



C2. Graphenexploration: Anwendungen Erreichbarkeit

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 39



C2. Graphenexploration: Anwendungen Erreichbarkeit

Mark-and-Sweep-Speicherbereinigung

Ziel: Gib Speicherplatz frei, der von nicht mehr zugreifbaren
Ziel: Objekten belegt wird.

I Gerichteter Graph: Objekte als Knoten,
Referenzen auf Objekte als Kanten

I Ein Bit pro Objekt für Markierung in Speicherbereinigung

I Mark: Markiere in regelmässigen Abständen alle erreichbaren
Objekte.

I Sweep: Gib alle nicht markierten Objekte frei.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 39



C2. Graphenexploration: Anwendungen Erreichbarkeit

Zauberstab in Bildbearbeitung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 39



C2. Graphenexploration: Anwendungen Kürzeste Pfade

C2.2 Kürzeste Pfade

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 39



C2. Graphenexploration: Anwendungen Kürzeste Pfade

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 39



C2. Graphenexploration: Anwendungen Kürzeste Pfade

Kürzeste Pfade: Idee

I Breitensuche besucht die Knoten mit aufsteigendem
(minimalen) Abstand vom Startknoten.

I Erster Besuch eines Knoten passiert auf kürzestem Pfad.

I Idee: Verwende Pfad aus induzierten Suchbaum

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 39



C2. Graphenexploration: Anwendungen Kürzeste Pfade

Jupyter-Notebook

Jupyter-Notebook: graph exploration applications.ipynb

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 39



C2. Graphenexploration: Anwendungen Kürzeste Pfade

Kürzeste-Pfade-Problem

Kürzeste-Pfade-Problem mit einem Startknoten

I Gegeben: Graph und Startknoten s
I Anfrage für Knoten v

I Gibt es Pfad von s nach v?
I Wenn ja, was ist der kürzeste Pfad?

I Engl. single-source shortest paths, SSSP

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 39



C2. Graphenexploration: Anwendungen Kürzeste Pfade

Kürzeste Pfade: Algorithmus

1 class SingleSourceShortestPaths:

2 def __init__(self, graph, start_node):

3 self.predecessor = [None] * graph.no_nodes()

4 self.predecessor[start_node] = start_node

5

6 # precompute predecessors with breadth-first search with

7 # self.predecessors used for detecting visited nodes

8 queue = deque()

9 queue.append(start_node)

10 while queue:

11 v = queue.popleft()

12 for s in graph.successors(v):

13 if self.predecessor[s] is None:

14 self.predecessor[s] = v

15 queue.append(s)

16 ...

Im Prinzip wie gehabt
(nur als Klasse)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 39



C2. Graphenexploration: Anwendungen Kürzeste Pfade

Kürzeste Pfade: Algorithmus (Fortsetzung)

19 def has_path_to(self, node):

20 return self.predecessor[node] is not None

21

22 def get_path_to(self, node):

23 if not self.has_path_to(node):

24 return None

25 if self.predecessor[node] == node: # start node

26 return [node]

27 pre = self.predecessor[node]

28 path = self.get_path_to(pre)

29 path.append(node)

30 return path

Laufzeit?

Später: Kürzeste Pfade mit Kantengewichten

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

C2.3 Azyklische Graphen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Erkennung von azyklischen Graphen

Definition (Gerichteter, azyklischer Graph)

Ein gerichteter, azyklischer Graph (directed acyclic graph, DAG)
ist ein gerichteter Graph, der keine gerichteten Zyklen enthält.

Aufgabe: Entscheide, ob ein gerichteter Graph
Aufgabe: einen Zyklus enthält. Falls ja, gib einen Zyklus aus.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Kriterium für Zykelfreiheit
vo

rw
är

ts

rü
ck

w
är

ts

seitwärts

Induzierter Suchbaum einer
Tiefensuche (orange) und
mögliche andere Kanten

Der (erreichbare Teil-) Graph
ist genau dann azyklisch, wenn
keine Rückwärtskante existiert.

Idee: Merke dir Knoten auf aktuellem Pfad in Tiefensuche

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Zykeltest: Algorithmus

1 class DirectedCycle:

2 def __init__(self, graph):

3 self.predecessor = [None] * graph.no_nodes()

4 self.on_current_path = [False] * graph.no_nodes()

5 self.cycle = None

6 for node in range(graph.no_nodes()):

7 if self.has_cycle():

8 break

9 if self.predecessor[node] is None:

10 self.predecessor[node] = node

11 self.dfs(graph, node)

12

13 def has_cycle(self):

14 return self.cycle is not None

Wiederholte Tiefen-
suchen, so dass am
Ende alle Knoten
besucht wurden

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]:

22 self.predecessor[s] = node

23 self.extract_cycle(s)

24 if self.predecessor[s] is None:

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Aktualisiere, ob
Knoten auf aktuellem
Pfad ist.

Brich ab, wenn
irgendwo Zyklus
gefunden.

Zyklus
gefunden

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Zykeltest: Algorithmus (Fortsetzung)

Bei Aufruf von extract cycle liegt node auf einem Zyklus in
self.predecessor.

29 def extract_cycle(self, node):

30 self.cycle = deque()

31 current = node

32 self.cycle.appendleft(current)

33 while True:

34 current = self.predecessor[current]

35 self.cycle.appendleft(current)

36 if current == node:

37 return

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Jupyter-Notebook

Jupyter-Notebook: graph exploration applications.ipynb

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Topologische Sortierung

Definition
Eine topologische Sortierung eines azyklischen, gerichteten
Graphen G = (V ,E ), ist eine Nummerierung no : V → N der
Knoten, so dass für jede Kante (u, v) gilt, dass no(u) < no(v).

Zum Beispiel relevant für Ablaufplanung:
Kante (u, v) drückt aus, dass u vor v

”
erledigt“ werden muss.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 25 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Topologische Sortierung: Illustration

0

1

2

3

4

56

4

6

1

3

0

2

5

1

2

3

4

5

6

7

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26 / 39



C2. Graphenexploration: Anwendungen Azyklische Graphen

Topologische Sortierung: Algorithmus

Theorem
Für den erreichbaren Teilgraphen eines azyklischenen Graphen ist
die umgekehrte Depth-First-Postorder-Knotenreihenfolge eine
topologische Sortierung.

Algorithmus:

I Folge von Tiefensuchen-Aufrufen (für bisher unbesuchte
Knoten) bis alle Knoten besucht.

I Speichere jeweils umgekehrte Postorderreihenfolge
Pi für i-te Suche

I Sei k Anzahl der Suchen. Dann ergibt die Aneinanderreihung
von Pk , . . . ,P1 eine topologische Sortierung.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

C2.4 Zusammenhang

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Erreichbarkeit

Kürzeste
Pfade

Zykelerkennung

Topologische
Sortierung

Zusammenhangs-
komponenten

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 29 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten ungerichteter Graphen

Ungerichteter Graph

I Zwei Knoten u und v sind in der gleichen
Zusammenhangskomponente, wenn
es einen Pfad zwischen u und v gibt.

0 1

2 3

4
5

6

7 8

9

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 30 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten: Interface

Wir möchten folgendes Interface implementieren:

1 class ConnectedComponents:

2 # Vorverarbeitender Konstruktor

3 def __init__(graph: UndirectedGraph) -> None

4

5 # Sind Knoten node1 und node2 verbunden?

6 def connected(node1: int, node2: int) -> bool

7

8 # Anzahl der Zusammenhangskomponenten

9 def count() -> int

10

11 # Komponentenbezeichner für node

12 # (zwischen 0 und count()-1)

13 def id(node: int) -> int

Idee: Folge von Graphexplorationen bis alle Knoten besucht sind.
Idee: ID eines Knoten entspricht Iteration, in der er besucht wurde

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 31 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten: Algorithmus

1 class ConnectedComponents:

2 def __init__(self, graph):

3 self.id = [None] * graph.no_nodes()

4 self.curr_id = 0

5 visited = [False] * graph.no_nodes()

6 for node in range(graph.no_nodes()):

7 if not visited[node]:

8 self.dfs(graph, node, visited)

9 self.curr_id += 1

10

11 def dfs(self, graph, node, visited):

12 if visited[node]:

13 return

14 visited[node] = True

15 self.id[node] = self.curr_id

16 for n in graph.neighbours(node):

17 self.dfs(graph, n, visited)

Wie sehen connected, count und id aus?
G. Röger (Universität Basel) Algorithmen und Datenstrukturen 32 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Jupyter-Notebook

Jupyter-Notebook: graph exploration applications.ipynb

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 33 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

I Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G .

I G ist stark zusammenhängend, wenn von jedem Knoten zu
jedem anderen Knoten ein gerichteter Pfad existiert.

I Eine starke Zusammenhangskomponente von G ist ein
maximal grosser Teilgraph, der stark zusammenhängend ist.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 34 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Starke Zusammenhangskomponenten

0 1

2 3

4
5

6

7 8

9

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 35 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Starke Zusammenhangskomponenten

Kosaraju-Algorithmus

I Gegeben Graph G = (V ,E ), berechne zunächst ein
umgekehrte Postorderreihenfolge P (für alle Knoten) des
Graphen GR = (V , {(v , u) | (u, v) ∈ E}) (alle Kanten
umgedreht).

I Führe eine Folge von Explorationen in G aus.
Wähle dabei als nächsten Startknoten jeweils den
ersten noch unbesuchten Knoten in P.

I Alle Knoten, die innerhalb einer Exploration erreicht werden,
sind in der gleichen starken Zusammenhangskomponente.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 36 / 39



C2. Graphenexploration: Anwendungen Zusammenhang

Jupyter-Notebook

Jupyter-Notebook: graph exploration applications.ipynb

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 37 / 39



C2. Graphenexploration: Anwendungen Zusammenfassung

C2.5 Zusammenfassung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 38 / 39



C2. Graphenexploration: Anwendungen Zusammenfassung

Zusammenfassung

Wir haben eine Reihe von Anwendungen der Graphenexploration
betrachtet:

I Erreichbarkeit

I Kürzeste Pfade

I Zykelerkennung

I Topologische Sortierung

I Zusammenhangskomponenten

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 39 / 39


	Erreichbarkeit
	

	Kürzeste Pfade
	

	Azyklische Graphen
	

	Zusammenhang
	

	Zusammenfassung
	


