
Algorithmen und Datenstrukturen
C1. Graphen: Grundlagen und Exploration

Gabriele Röger

Universität Basel

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 44

Algorithmen und Datenstrukturen
— C1. Graphen: Grundlagen und Exploration

C1.1 Motivation

C1.2 Grundlegende Definition

C1.3 Repräsentation

C1.4 Graphenexploration

C1.5 Zusammenfassung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 44

Inhalt dieser Veranstaltung

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

Strings

Weiterführende
Themen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 44

C1. Graphen: Grundlagen und Exploration Motivation

C1.1 Motivation

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Strassenkarten

openstreetmap.org

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Liniennetz

tnw.ch

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Navigationsnetz in Spielen

heroengine.com

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Versorgungssystem

dgis.info

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Internet

Barrett Lyon / The Opte Project
Visualization of the routing paths of the Internet.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Soziale Netzwerke

”
Visualizing Friendships“ von Paul Butler

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Zusammenarbeit

linkedjazz.org

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Protein-Interaktion

Network representation of the p53 protein interactions
Module detection in complex networks using integer optimisation,

Xu G, Bennett L, Papageorgiou LG, Tsoka S - Algorithms Mol Biol (2010)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Mögliche Fragestellungen

I Sind A und B verbunden?

I Was ist der kürzeste Weg zwischen A und B?

I Wie weit sind zwei Elemente höchstens voneinander entfernt?

I Wieviel Wasser kann die Kanalisation abführen?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 44

C1. Graphen: Grundlagen und Exploration Motivation

Abstrakte Graphen

Ein Graph besteht aus Knoten und Kanten zwischen Knoten.

Knoten Kanten

Strassen Kreuzung Strassenabschnitt
Internet AS (≈ Provider) Route

Facebook Person Freundschaft
Proteine Protein Interaktion

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 44

C1. Graphen: Grundlagen und Exploration Grundlegende Definition

C1.2 Grundlegende Definition

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 44

C1. Graphen: Grundlagen und Exploration Grundlegende Definition

Ungerichtete und gerichtete Graphen

A B

C D

E
F

ungerichteter Graph

1 2

3 4

5

gerichteter Graph

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 44

C1. Graphen: Grundlagen und Exploration Grundlegende Definition

Graphen

I Ein Graph besteht aus zwei Mengen V und E
I V: Menge der Knoten (engl. vertices)
I E: Menge der Kanten (engl. edges)

I Jede Kante verbindet zwei Knoten u und v
I ungerichteter Graph: Menge {u, v}
I gerichteter Graph: Paar (u, v)

I Bei Multigraphen kann es mehrere, parallele
Kanten zwischen den gleichen Knoten geben.

I Bei gewichteten Graphen hat jede Kante ein Gewicht (Zahl).

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 44

C1. Graphen: Grundlagen und Exploration Grundlegende Definition

Ungerichtete Graphen: Terminologie

I Nachbarn eines Knotens u: alle Knoten v mit {u, v} ∈ E .
I degree(v): Grad eines Knotens = Anzahl der Nachbarn.

I Ausnahme: Schleife erhöht den Grad um 2.
Schleife = Kante, die einen Knoten mit sich selbst verbindet.

3 4

4 1

2

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 44

C1. Graphen: Grundlagen und Exploration Grundlegende Definition

Gerichtete Graphen: Terminologie

I Nachfolger eines Knotens u: alle Knoten v mit (u, v) ∈ E .

I Vorgänger eines Knotens u: alle Knoten v mit (v , u) ∈ E .

I outdegree(v): Ausgangsgrad = Anzahl der Nachfolger

I indegree(v): Eingangsgrad = Anzahl der Vorgänger

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 44

C1. Graphen: Grundlagen und Exploration Grundlegende Definition

Pfade und Zyklen

I Pfad der Länge n: Sequenz (v0, . . . , vn) von Knoten mit
I {vi , vi+1} ∈ E für i = 0, . . . , n − 1 (ungerichteter Graph)
I (vi , vi+1) ∈ E für i = 0, . . . , n − 1 (gerichteter Graph)
I Beispiel: (5,4,1,2)

I Zyklus: Pfad mit gleichem Start- und Endknoten,
der keine Kante mehrmals verwendet.

I (6,7,9,8,6) im ungerichteten und
(5,2,1,3,5) im gerichteten Beispielgraphen

I existiert kein Zyklus, ist der Graph azyklisch

1 2

4 3

5 6 7

8 9

Pfad der
Länge 3

Zyklus der
Länge 4

1

2

3 4

5

Pfad der
Länge 3

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 44

C1. Graphen: Grundlagen und Exploration Repräsentation

C1.3 Repräsentation

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 44

C1. Graphen: Grundlagen und Exploration Repräsentation

Inhalt dieser Veranstaltung

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

Strings

Weiterführende
Themen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 44

C1. Graphen: Grundlagen und Exploration Repräsentation

Repräsentation der Knoten

I Wir verwenden Zahlen von 0 bis |V | − 1 für die Knoten.

I Falls in Anwendung nicht gegeben: Verwende Symboltabellen,
um zwischen Namen und Zahlen zu konvertieren.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 44

C1. Graphen: Grundlagen und Exploration Repräsentation

Graphenrepräsentation mit Adjazenzmatrix

Graph G = ({0, . . . , |V | − 1},E) repräsentiert durch
|V | × |V |-Matrix mit Einträgen aik (in Zeile i , Spalte k):

aik =


1 falls (i , k) ∈ E (gerichteter Graph) bzw.

{i , k} ∈ E (ungerichteter Graph)

0 sonst

0

1

2

3

4

A =


0 1 1 0 0
1 0 0 0 0
0 0 0 0 1
1 0 1 1 0
0 0 1 1 0

 Bei ungerichteten
Graphen symmetrisch

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24 / 44

C1. Graphen: Grundlagen und Exploration Repräsentation

Graphenrepräsentation mit Adjazenzliste

Speichere für jeden Knoten die Liste aller Nachfolger / Nachbarn

0

1

2

3

4

0

1

2

3

4

1 2

0

4

0 2 3

3 2

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 25 / 44

C1. Graphen: Grundlagen und Exploration Repräsentation

Repräsentation: Komplexität

Adj.matrix Adj.liste

Platzbedarf |V |2 |E |+ |V |
Kante hinzufügen 1 1

Kante zwischen u und v? 1 (out)degree(v)

Iterieren über ausgeh. Kanten |V | (out)degree(v)

Praxis: oft dünne Graphen (geringer durchschnittlicher Grad)
Praxis: Welche Repräsentation?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

C1.4 Graphenexploration

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Tiefensuche

Breitensuche

Induzierter
Suchbaum

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Graphenexploration

I Aufgabe: Gegeben einen Knoten v , besuche alle Knoten, die
von v aus erreichbar sind.

I Wird oft als Teil anderer Graphenalgorithmen benötigt.

I Tiefensuche: erst einmal möglichst tief in den Graphen
(weit weg von v)

I Breitensuche: erst alle Nachbarn, dann Nachbarn der
Nachbarn, . . .

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 29 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Tiefensuche

Markiere erreichte Knoten

I Markiere v
I Iteriere über die Nachfolger/Nachbarn w von v .

I Falls w nicht markiert, starte rekursiv von w .

Englisch: Depth-first search, DFS

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 30 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Tiefensuche: Beispiel

Hier: Besuche Nachfolger mit aufsteigender Knotennummer

0

1

3

2

5

4

Tiefensuche mit Startknoten 0
markiert Knoten in Reihenfolge
0 - 1 - 2 - 4 - 5 - 3

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 31 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Tiefensuche: Algorithmus (rekursiv)

1 def depth_first_exploration(graph, node, visited=None):

2 if visited is None:

3 visited = set()

4 if node in visited:

5 return

6 visited.add(node)

7 for s in graph.successors(node):

8 depth_first_exploration(graph, s, visited)

Falls zu erwarten ist, dass ein Grossteil der Knoten besucht wird:
bool-Array statt Menge für visited

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 32 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Depth-First-Knotenreihenfolgen

I Preorder: Knoten wird erfasst, bevor seine Kinder betrachtet
werden.

I Postorder: Knoten wird erfasst, wenn die (rekursive)
Tiefensuche mit allen seinen Kindern fertig ist.

I Umgekehrte Postorder: Wie Postorder, aber in umgekehrter
Reihenfolge (spätere Knoten vorne)

1 def depth_first_exploration(graph, node):

2 if node in visited:

3 return

4 preorder.append(node)

5 visited.add(node)

6 for s in graph.successors(node):

7 depth_first_exploration(graph, s, visited)

8 postorder.append(node)

9 reverse postorder.appendleft(node)

(Repräsentation der Knotenreihenfolgen als Deque)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 33 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Tiefensuche: Algorithmus (iterativ)

1 def depth_first_exploration(graph, node):

2 visited = set()

3 stack = deque()

4 stack.append(node)

5 while stack:

6 v = stack.pop() # LIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):

10 stack.append(s)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 34 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Tiefensuche in der Praxis

https://xkcd.com/761/

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 35 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Breitensuche

Erst alle Nachbarn, dann Nachbarn der Nachbarn, . . .

I Markiere v
→ Abstand 0

I Markiere alle unmarkierten Nachfolger/Nachbarn von v
→ Abstand 1

I Markiere alle unmarkierten Nachfolger/Nachbarn von
Abstand-1-Knoten

I Markiere alle unmarkierten Nachfolger/Nachbarn von
Abstand-2-Knoten

I . . .

I Bis Abstand-i-Knoten keine unmarkierten
Nachfolger/Nachbarn haben

Englisch: Breadth-first search, BFS

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 36 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Breitensuche: Beispiel

Hier: Besuche Nachfolger mit aufsteigender Knotennummer

0

1

3

2

5

4

Breitensuche mit Startknoten
0 markiert Knoten in
Reihenfolge
0 - 1 - 3 - 2 - 4 - 5

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 37 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Breitensuche: Algorithmus (konzeptionell)

Einziger Unterschied zu iterativem Tiefensuchalgorithmus:
First-in-first-out-Behandlung der Knoten (statt last-in-first-out)

1 def breadth_first_exploration(graph, node):

2 visited = set()

3 queue = deque()

4 queue.append(node)

5 while queue:

6 v = queue.popleft() # FIFO

7 if v not in visited:

8 visited.add(v)

9 for s in graph.successors(v):

10 queue.append(s)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 38 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Breitensuche: Algorithmus (etwas effizienter)

Nur erstes Antreffen eines Knotens wird weiterbetrachtet.
Wir können den Knoten direkt markieren und ihn bei einem
weiteren Antreffen sofort verwerfen.

1 def breadth_first_exploration(graph, node):

2 visited = set()

3 queue = deque()

4 visited.add(node)

5 queue.append(node)

6 while queue:

7 v = queue.popleft()

8 for s in graph.successors(v):

9 if s not in visited:

10 visited.add(s)

11 queue.append(s)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 39 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Laufzeit

Bei allen Algorithmenvarianten:

I Jeder erreichbare Knoten wird markiert.

I Man folgt jeder erreichbaren Kante einmal.

I Laufzeit O(|V |+ |E |)
I kann man auf erreichbare Knoten und Kanten einschränken

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 40 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Induzierter Suchbaum

Der induzierte Suchbaum einer Graphenexploration enthält zu
jedem besuchten Knoten (ausser dem Startknoten) eine Kante von
dessen Vorgänger in der Exploration.

0

1

3

2

5

4

Tiefensuche

0

1

3

2

5

4

Breitensuche

(induzierter Suchbaum 6= binärer Suchbaum)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 41 / 44

C1. Graphen: Grundlagen und Exploration Graphenexploration

Induzierter Suchbaum: Beispiel Breitensuche

I Jeder Knoten hat höchstens einen Vorgänger im Baum.

I Repräsentiere induzierten Suchbaum durch Vorgängerrelation

I Besuchte Knoten sind genau die, für die Vorgänger gesetzt ist:
Verzichte auf visited.

1 def bfs_with_predecessors(graph, node):

2 predecessor = [None] * graph.no_nodes()

3 queue = deque()

4 # use self-loop for start node

5 predecessor[node] = node

6 queue.append(node)

7 while queue:

8 v = queue.popleft()

9 for s in graph.successors(v):

10 if predecessor[s] is None:

11 predecessor[s] = v

12 queue.append(s)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 42 / 44

C1. Graphen: Grundlagen und Exploration Zusammenfassung

C1.5 Zusammenfassung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 43 / 44

C1. Graphen: Grundlagen und Exploration Zusammenfassung

I Graphen bestehen aus Knoten und Kanten

I Kanten können gerichtet oder ungerichtet sein.

I Graphenexploration besucht systematisch alle Knoten,
die von einem bestimmten Knoten erreichbar sind.
I Tiefensuche geht zuerst in die

”
Tiefe“.

I Breitensuche besucht zuerst die Knoten, die näher am
Startknoten sind.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 44 / 44

	Motivation
	

	Grundlegende Definition
	

	Repräsentation
	

	Graphenexploration
	

	Zusammenfassung
	

