Algorithmen und Datenstrukturen
B10. Hashtabellen

Marcel Liithi and Gabriele Roger

Universitat Basel

Einfiihrung

Symboltabellen: Ubersicht

Worst-case Average-case
Implementation suchen einfiigen Idschen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo(N) N N log,(N) N/2 N
BST N N N log, () log,(N) VN
Rot-Schwarz Baume log,(N) logy(N) logy(N) log,(N) logo(N) logy(N)

Frage
Geht es noch besser?

Einfiihrung

ooe

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

m Wichtigstes Werkzeug: Hashfunktion
m Berechnet Index aus Schliissel hash(hallo) -3

* “hallo”

© ® N o u &> w N » O

Einfiihrung

ooe

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

Index

m Wichtigstes Werkzeug: Hashfunktion
m Berechnet Index aus Schliissel hash(hallo) -3

< “welt”

* “hallo”

hash(“welt”) = 1

© ® N @ u & w N » O

Einfiihrung

ooe

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

haben gleichen Hashwert)

m Wichtigstes Werkzeug: Hashfunktion o M
m Berechnet Index aus Schliissel etaieyea /- b :
Herausforderungen: /il
m Hashfunktion berechnen A, :
m Kollisionen (2 unterschiedliche Schliissel pashCapter) =3 j
.
5

Hashfunktionen
0000000000000 00

Hashfunktionen

Einfiihrung Hashfunktionen
0®0000000000000

Hashfunktion: Ziele

m Konsistenz: Gleicher Schliissel sollte immer gleichen Hashwert
ergeben.
m Hashfunktion sollte effizient berechnet werden kdnnen.

m Schliissel sollten gleichverteilt sein.
m gleiche Wahrscheinlichkeit fiir jedes Feld

Einfiihrung Hashfunktionen Hashtabel

Quiz: Hashfunktion

Was sind mogliche Hashfunktionen fiir
m Integer (32 Bit Ganzzahl)
m Datum
m Strings
m Bilder

Wie aufwindig ist jeweils die Berechnung der Hashfunktion?

Einfiihrung Hashfunktionen
000®00000000000

Hashfunktionen in Java

Alle Java Klassen erben Methode hashCode
Anforderung:

m Falls x.equals(y) dann x.hashCode() == y.hashCode ()
Gewiinscht:

m Falls !'x.equals(y) dann x.hashCode() ! = y.hashCode()

Wenn immer equals iiberschrieben wird, muss auch hashCode
iiberschrieben werden.

J

Hashfunktionen
0000e0000000000

Beispiele von Hashfunktionen in Java

Integer:

public int hashCode() {
return this.value;

}

Einfiihrung Hashfunktionen
00000®000000000

Beispiele von Hashfunktionen in Java

String:

public int hashCode() {
int h = 0;
if (value.length > 0) {
char vall] value;

for (int i = 0; i < value.length; i++) {
h =31 h + vallil;

*

}

return h;

Einfiihrung Hashfunktionen
000 000000 e00000000

Beispiele von Hashfunktionen in Java

LinkedList:

public int hashCode() {
int hashCode = 1;
for (E e : this)
hashCode = 31 * hashCode + (e==null ? O : e.hashCode());
return hashCode;

Einfiihrung Hashfunktionen H
[e]e]e} 0000000800000 00

Praktisches Rezept fiir benutzerdefinierte Typen

public int hashCode ()

{
int hash = 17;
hash = 31xhash + fieldl.hashCode();
hash = 31xhash + field2.hashCode();
hash = 31xhash + field3.hashCode();
return hash;

}

Funktioniert gut in Praxis - aber theoretisch nicht optimal.

Einfiihrung Hashfunktionen

00000000 e000000

Praktische Tips

Gute Hashfunktionen zu entwerfen ist schwierig! J

Einige Tips:
m Alle Bits im Schliissel sollten bei Berechnung gleich
mitberiicksichtigt werden.
m Verbessert Verteilung!
m Experimentell iiberpriifen (plot?)
m Hashing ist klassischer Performancebug. (Alles lauft korrekt
aber Programm ist langsam.)

m Hashfunktion auf Effizienz priifen.
m Was ist schneller, Vergleich oder Hash?

Einfiihrung Hashfunktionen

0000000008000 00

Hashfuntionen in Python

m Hashfunktionen werden via die Methode __hash__ angegeben.

Called by built-in function hash() and for operations on members
of hashed collections including set, frozenset, and dict. __hash__()
should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to
mix together the hash values of the components of the object that
also play a part in comparison of objects by packing them into a
tuple and hashing the tuple.

Python Language Reference - Section 3: Data Model

Einfiihrung Hashfunktionen
0000000000e0000

Modulares Hashing

Werte der Hashfunktion kdnnen negativ sein. Wir wollen aber
Werte zwischen 0 und M. J

m Positiven Hash-wert nehmen und Modulo M rechnen.
In Java:

private int modularHash(Key x) {
return (x.hashCode() & Ox7fffffff) % M;
}
In Python:

def modularHash(x):
return (hash(x) % ((sys.maxsize + 1) * 2) % M)

Einfiihrung Hashfunktionen
00000000000e000

Theoretische Analyse von Hashtabellen

Typische Annahme

Die von uns verwendeten Hashfunktionen verteilen die Schliissel
gleichmaBig und unabhangig voneinander auf die Integer-Werte
zwischen O und M — 1.

900

L
[L e o [L JK
o 1 2 3 5 6 7 8 9 10 11 12

Bille werden zufillig in M verschiedene Gefésse verteilt.

Einfiihrung Hashfunktionen

00000000000 0e00

Kollisionen

Wir kdnnen Kollisionen nicht verhindern. J

Beispiele relevanter mathematischer Resultate:

Geburtstagsparadox In einer Gruppe von 23 Kindern ist die
Wabhrscheinlichkeit 0.5, dass zwei am selben Tag
Geburtstag haben.
m Angewandt auf hashing: Anzahl Platze:
M = 365, Nach N = 23 Elementen bereits
grosse Chance, dass Kollision auftritt.
m Allgemein: Wir erwarten Kollision nach ungefihr

\/7™M /2 Elementen.

Einfiihrung Hashfunktionen

0000000000000 e0

Kollisionen

Wir kdnnen Kollisionen nicht verhindern.)

Beispiele relevanter mathematischer Resultate:

Sammelbilderproblem Gegeben M Sammelbilder, wieviele Bilder
muss man ziehen (mit zuriicklegen), bevor man jedes
einmal gezogen hat?

m Angewandt auf hashing: Wie lange dauert es bis
alle Felder besetzt sind?
m Der Erwartungswert wéchst mit ©(M log(M))

Um M = 50 unterschiedliche Sammelbilder zu haben
bendtigen wir ungefihr 50 log(50) ~ 200 Bilder

Hashfunktionen

0000000000000 0!

Experimente

Zjupyter untitied ausa
Fle Edt Vew et Col Kemel Help

| Python [Roof] O
B+ x @A B 4 ¢ N EC coe

© Celloobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline
Populating Lhe inleraclive namespace Lrom aumpy and malplollib

In 1713 plot(linspace(0, 1000), (lins)

ce (0,1000) **2))
Out17]: [<matplotlib.linas.Tine2D at 0x29d8be027a8>]

1000000

800000

00000

00000

200000

20 0 EQ EQ 000

IPython Notebooks: Hashtables.ipynb

Hashtabellen
©0000000000000000

Hashtabellen

Hashtabellen

Einfiihrung

O@000000000000000

Hashtabelle: 2 Implementationen

Grundlage ist immer ein Array der Grosse M um N Eintrage zu
speichern.
Wichtigste Frage: Wie behandle ich Kollisionen?
2 Strategien
m Verkettung (separate chaining)
m Jedes Element enthilt Verkettete Liste mit allen Schliissel /
Werte Paaren
m M kann kleiner sein als N
m Lineare Sondierung (linear probing)
m M wird grosser gewahlt als N.
® Suche nach nichstem freien Platz.

Hashtabellen
00®00000000000000
Verkettung

Hash: Schliissel wird auf Zahl zwischen 0 und M — 1
gemappt.

Einfiigen: Falls nicht gefunden, am Anfang in Liste enfiigen

Suche: Relevante Liste durchsuchen

Index _—

——— null

—]
i m o

000@0000000000000

Einfiihrung Hashtabellen

Komplexitat

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme), dass die Anzahl der Schliissel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.

Einfiihrung Hashfunktioner Hashtabellen

000@0000000000000

Komplexitat

Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme), dass die Anzahl der Schliissel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.

Theorem

| A

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Anzahl der Vergleiche (Gleichheitstests) fiir
Einfiigungen und erfolglose Suchen ~ N /M.

\

Hashtabellen
0000®000000000000

Verkettung: Elemente Loschen

m Einfache Operation: Element aus relevanter Liste l6schen.

inde = i "
0 o -
1 Tl 1 B null
T e [7 By s [0 2 — a-Ja
3 ~—_ 3 N

L |3 g P 10 ——— -

Verkettung: Grossenanpassung

m Ziel: Lange N/M bleibt etwa konstant
m Alle Elemente miissen neu gehashed werden.

ol

‘ } EI
e G 6
Index

o E8

N
|
|
|
\
-
wv

w

~

. oa om;
008 B8

Hashtabellen
00000080000000000

Implementation und Beispielanwendung

Zjupyter untitied ausa

Fle Edt View Inset Cell Kemel Help

| Python [Roof] O
B+ x @A B 4 ¢ N EC coe

Y @ Celfoobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline

Populating Lhe inleraclive namespace Lrom aumpy and malplollib
In 171 | plot(linspace(0, 1000), (Linspace(0,1000) **2))
Out171: [<matplotlib.lines.Tine2d at 0x29d8be022e8>)

1000000

800000

00000

00000

200000

IPython Notebooks: Hashtables.ipynb

Einfiihrung ashfi > Hashtabellen

0000000 @000000000

Informatiker des Tages : Arthur Lee Samuel

m Professor in Stanford

m Mitentwickler von TEX
m Pionier in Kiinstlicher Intelligenz /
Maschinellem lernen
m Entwickelte erstes erfolgreiches
Dame-Programm.
m Erste Implementation der linearen
Sondierungsstrategie in
Hashtabellen (1953)

Arthur Lee Samuel

Einfiihrung a Hashtabellen

000000008000 00000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfiigen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert S
hash(S)=2

o 1 2

; 3 4 5 6 7 8 9 10 11 12 13 14
.

15

Einfiihrung Hashtabellen

000000008000 00000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfiigen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert E
hash(E)=0

o/ 1 2

3 4 5 6 7 8 9 10 11 12 13 14
¥
HEDEEEEEEEEE .
L1 1 | | | I _— I

15

Einfiihrung Hashtabellen

000000008000 00000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfiigen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert A
hash(A)=0

o/ 1 2

3 4 5 6 7 8 9 10 11 12 13 14
¥
NSNS EEEE .
L1 1 | | | I _— I

15

Einfiihrung Hashtabellen

000000008000 00000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfiigen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position 7 + 1,/ 4 2, etc.

Insert A
hash(A)=0

8 9

o 2 3 4 5 6 7 10 11 12 13 14
HEENNE -

15

Einfiihrung Hashtabellen

000000008000 00000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfiigen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position 7 + 1,/ 4 2, etc.

Insert R
hash(R)=4

8

o 1 2 3 4 5 6 7 9 10 11 12 13 14
HEENNE e

15

Einfiihrung Hashtabellen

000000008000 00000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfiigen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position 7 + 1,/ 4 2, etc.

Suche A
hash(A)=0

8

o 1 2 3 4 5 6 7 9 10 11 12 13 14
HEENEN e

15

Einfiihrung Hashtabellen

000000008000 00000

Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfiigen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position 7 + 1,/ 4 2, etc.

Suche A
hash(A)=0

8

o 1 2 3 4 5 6 7 9 10 11 12 13 14
HEENEN e

15

Einfiihrung Hashfunktionen Hashtabellen
© 000000000e0000000

Lineare Sondierung: Elemente Loschen

m Wenn erstes Element in Cluster geloscht wird, miissen
Nachfolger geldscht werden.

sovose |l o

Was ist wenn hash(1)=7?
o 1 2 4 5 7 8 10 11 13 14
il e ol e e o s 0

3 6 9 12 15

Eumw rung en Hashtabellen

0000000000 e000000

Lineare Sondierung: Grossenanpassu ng

m Ziel: Linge N/M <1/2

m Alle Elemente miissen neu gehashed werden.

o] 1

- RN ENEN

Hashtabellen
00000000000e00000

Implementation und Beispielanwendung

Zjupyter untitied ausa

Fle Edt View Inset Cell Kemel Help

| Python [Roof] O
B+ x @A B 4 ¢ N EC coe

Y @ Celfoobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline

Populating Lhe inleraclive namespace Lrom aumpy and malplollib
In 171 | plot(linspace(0, 1000), (Linspace(0,1000) **2))
Out171: [<matplotlib.lines.Tine2d at 0x29d8be022e8>)

1000000

800000

00000

00000

200000

IPython Notebooks: Hashtables.ipynb

Hashtabellen

Clustering

Beobachtung
Lineares Sondieren fiihrt zu Clusterbildung.

m Bei Kollision wachst ein Cluster, da das Element am Ende
eingefligt wird.

o]l][2]ls][e]l=]le][7][e][o]|s][x]|z2]]s] s]| 5]]|

HEEESSEEEEEEEEEEES

Hashtabellen
0000000000000e000

Clustering

Beobachtung

Lange Cluster wachsen schneller als kurze.

9/64-Chance, dass der neue
Schliissel dieses Cluster vergrifiert

vorher
o o . o oo [Fssseeiie]eessessssseee so ses o s e o
m Wahrscheinlichkeit in einem Schlissel landet in
. /diesem Fall hier
grossen Cluster zu landen ist v e eusssenenelimsersenens ss sue o s ee o
= d bildet ein viel
grosser' nachher let'lz'ngelreftcel,uy;tvelrﬁ

Quelle: Abb. 3.60, Algorithmen, Wayne & Sedgewick

Einfiihrung Hashfunktioner Hashtabellen

,,,,,,,,,,,)OO00 000000000000 00e00

Clustering

Beobachtung
Laufzeit der Suche hangt von Linge der Cluster ab.

Theorem

In einer auf linearer Sondierung basierenden Hashtabelle mit einer
Liste der Grésse M und N = aM Schliisseln ist die erforderliche
durchschnittliche Anzahl von Sondierungen fiir erfolgreiches
beziehungsweise erfolgloses Suchen

1 1 1 1
~Z (14— d ~=(1+———+
(tita) e =5 (i ap)

Einfiihrung

Hashtabellen

000000000000 000e0

Komplexitat

Worst-case Average-case
Implementation suchen einfiigen 18schen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo(N) N N log,(N) N/2 N
BST N N N log, (N) loga(N) VN
Rot-Schwarz Baume log,(N) logy(N) logy(N) log,(N) logo(N) logy(N)
Hashtabellen N N N 0o(1) 0o(1) 0o(1)

Einfithrun Hashtabellen

000000000000 0000

Diskussion

Wann sollen wir welche Art von Datenstruktur verwenden?

guarantee average case
ordered key
implementation g
ops? interface
e M
sequential search
Gunordered lis) N N ®BN N BN equals()
binary search
Cremdeny BN N N leN BN BN v comareToO
BsT N N N 139N 139N VN v comareToO
red-black BT 21gN 21N 21gN 10N 10lgN 10lgN v compareToQ)
separate chaining N N N 35+ 35+ 35+ e
linear probing N N N 35+ 35+ 35+ hi‘ZZZEZﬁ)

Abbildung: Sedgewick & Wayne, Tabelle 3.15

	Einführung
	

	Hashfunktionen
	

	Hashtabellen
	

