
Algorithmen und Datenstrukturen
B10. Hashtabellen

Marcel Lüthi and Gabriele Röger

Universität Basel

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 37

Algorithmen und Datenstrukturen
— B10. Hashtabellen

B10.1 Einführung

B10.2 Hashfunktionen

B10.3 Hashtabellen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 37

B10. Hashtabellen Einführung

B10.1 Einführung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 37

B10. Hashtabellen Einführung

Symboltabellen: Übersicht

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

BST N N N log2(N) log2(N)
√
N

Rot-Schwarz Bäume log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)

Frage

Geht es noch besser?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 37



B10. Hashtabellen Einführung

Hashtabellen: Idee

Elemente werden in Array gespeichert, wobei Position durch
Schlüssel bestimmt ist.

I Wichtigstes Werkzeug: Hashfunktion
I Berechnet Index aus Schlüssel

Herausforderungen:

I Hashfunktion berechnen

I Kollisionen (2 unterschiedliche Schlüssel
haben gleichen Hashwert)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 37

B10. Hashtabellen Hashfunktionen

B10.2 Hashfunktionen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 37

B10. Hashtabellen Hashfunktionen

Hashfunktion: Ziele

I Konsistenz: Gleicher Schlüssel sollte immer gleichen Hashwert
ergeben.

I Hashfunktion sollte effizient berechnet werden können.
I Schlüssel sollten gleichverteilt sein.

I gleiche Wahrscheinlichkeit für jedes Feld

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 37

B10. Hashtabellen Hashfunktionen

Quiz: Hashfunktion

Was sind mögliche Hashfunktionen für

I Integer (32 Bit Ganzzahl)

I Datum

I Strings

I Bilder

Wie aufwändig ist jeweils die Berechnung der Hashfunktion?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 37



B10. Hashtabellen Hashfunktionen

Hashfunktionen in Java

Alle Java Klassen erben Methode hashCode

Anforderung:

I Falls x.equals(y) dann x.hashCode() == y.hashCode()

Gewünscht:

I Falls !x.equals(y) dann x.hashCode() ! = y.hashCode()

Wenn immer equals überschrieben wird, muss auch hashCode

überschrieben werden.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 37

B10. Hashtabellen Hashfunktionen

Beispiele von Hashfunktionen in Java

Integer:

public int hashCode() {

return this.value;

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 37

B10. Hashtabellen Hashfunktionen

Beispiele von Hashfunktionen in Java

String:

public int hashCode() {

int h = 0;

if (value.length > 0) {

char val[] = value;

for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i];

}

}

return h;

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 37

B10. Hashtabellen Hashfunktionen

Beispiele von Hashfunktionen in Java

LinkedList:

public int hashCode() {

int hashCode = 1;

for (E e : this)

hashCode = 31 * hashCode + (e==null ? 0 : e.hashCode());

return hashCode;

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 37



B10. Hashtabellen Hashfunktionen

Praktisches Rezept für benutzerdefinierte Typen

public int hashCode()

{

int hash = 17;

hash = 31*hash + field1.hashCode();

hash = 31*hash + field2.hashCode();

hash = 31*hash + field3.hashCode();

...

return hash;

}

Funktioniert gut in Praxis - aber theoretisch nicht optimal.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 37

B10. Hashtabellen Hashfunktionen

Praktische Tips

Gute Hashfunktionen zu entwerfen ist schwierig!

Einige Tips:
I Alle Bits im Schlüssel sollten bei Berechnung gleich

mitberücksichtigt werden.
I Verbessert Verteilung!
I Experimentell überprüfen (plot?)

I Hashing ist klassischer Performancebug. (Alles läuft korrekt
aber Programm ist langsam.)
I Hashfunktion auf Effizienz prüfen.
I Was ist schneller, Vergleich oder Hash?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 37

B10. Hashtabellen Hashfunktionen

Hashfuntionen in Python

I Hashfunktionen werden via die Methode hash angegeben.

hash ()

Called by built-in function hash() and for operations on members
of hashed collections including set, frozenset, and dict. hash ()

should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to
mix together the hash values of the components of the object that
also play a part in comparison of objects by packing them into a
tuple and hashing the tuple.

Python Language Reference - Section 3: Data Model

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 37

B10. Hashtabellen Hashfunktionen

Modulares Hashing

Werte der Hashfunktion können negativ sein. Wir wollen aber
Werte zwischen 0 und M.

I Positiven Hash-wert nehmen und Modulo M rechnen.
In Java:

private int modularHash(Key x) {

return (x.hashCode() & 0x7fffffff) % M;

}

In Python:

def modularHash(x):

return (hash(x) % ((sys.maxsize + 1) * 2) % M)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 37



B10. Hashtabellen Hashfunktionen

Theoretische Analyse von Hashtabellen

Typische Annahme

Die von uns verwendeten Hashfunktionen verteilen die Schlüssel
gleichmäßig und unabhängig voneinander auf die Integer-Werte
zwischen 0 und M − 1.

Bälle werden zufällig in M verschiedene Gefässe verteilt.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 37

B10. Hashtabellen Hashfunktionen

Kollisionen

Wir können Kollisionen nicht verhindern.

Beispiele relevanter mathematischer Resultate:

Geburtstagsparadox In einer Gruppe von 23 Kindern ist die
Wahrscheinlichkeit 0.5, dass zwei am selben Tag
Geburtstag haben.

I Angewandt auf hashing: Anzahl Plätze:
M = 365, Nach N = 23 Elementen bereits
grosse Chance, dass Kollision auftritt.

I Allgemein: Wir erwarten Kollision nach ungefähr√
πM/2 Elementen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 37

B10. Hashtabellen Hashfunktionen

Kollisionen

Wir können Kollisionen nicht verhindern.

Beispiele relevanter mathematischer Resultate:

Sammelbilderproblem Gegeben M Sammelbilder, wieviele Bilder
muss man ziehen (mit zurücklegen), bevor man jedes
einmal gezogen hat?

I Angewandt auf hashing: Wie lange dauert es bis
alle Felder besetzt sind?

I Der Erwartungswert wächst mit Θ(M log(M))

Um M = 50 unterschiedliche Sammelbilder zu haben
benötigen wir ungefähr 50 log(50) ≈ 200 Bilder

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 37

B10. Hashtabellen Hashfunktionen

Experimente

IPython Notebooks: Hashtables.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 37



B10. Hashtabellen Hashtabellen

B10.3 Hashtabellen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 37

B10. Hashtabellen Hashtabellen

Hashtabelle: 2 Implementationen

Grundlage ist immer ein Array der Grösse M um N Einträge zu
speichern.
Wichtigste Frage: Wie behandle ich Kollisionen?
2 Strategien
I Verkettung (separate chaining)

I Jedes Element enthält Verkettete Liste mit allen Schlüssel /
Werte Paaren

I M kann kleiner sein als N

I Lineare Sondierung (linear probing)
I M wird grösser gewählt als N.

I Suche nach nächstem freien Platz.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 37

B10. Hashtabellen Hashtabellen

Verkettung

Hash: Schlüssel wird auf Zahl zwischen 0 und M − 1
gemappt.

Einfügen: Falls nicht gefunden, am Anfang in Liste enfügen

Suche: Relevante Liste durchsuchen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 37

B10. Hashtabellen Hashtabellen

Komplexität

Theorem
In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schlüsseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme ), dass die Anzahl der Schlüssel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.

Theorem
In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schlüsseln ist die Anzahl der Vergleiche (Gleichheitstests) für
Einfügungen und erfolglose Suchen ∼ N/M.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24 / 37



B10. Hashtabellen Hashtabellen

Verkettung: Elemente Löschen

I Einfache Operation: Element aus relevanter Liste löschen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 25 / 37

B10. Hashtabellen Hashtabellen

Verkettung: Grössenanpassung

I Ziel: Länge N/M bleibt etwa konstant
I Alle Elemente müssen neu gehashed werden.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26 / 37

B10. Hashtabellen Hashtabellen

Implementation und Beispielanwendung

IPython Notebooks: Hashtables.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27 / 37

B10. Hashtabellen Hashtabellen

Informatiker des Tages : Arthur Lee Samuel

Arthur Lee Samuel

I Professor in Stanford

I Mitentwickler von TEX
I Pionier in Künstlicher Intelligenz /

Maschinellem lernen
I Entwickelte erstes erfolgreiches

Dame-Programm.

I Erste Implementation der linearen
Sondierungsstrategie in
Hashtabellen (1953)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28 / 37



B10. Hashtabellen Hashtabellen

Lineares sondieren

Voraussetzung: M > N

Hash: Schlüssel wird auf Zahl i zwischen 0 und M − 1
gemappt.

Einfügen: An Position i einfügen.
I Falls belegt, probiere Position i + 1, i + 2, ...

Suche: Suche an Index i
I Falls nicht leer, aber Eintrag ! = gesuchter

Schlüssel, suche an Position i + 1, i + 2, etc.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 29 / 37

B10. Hashtabellen Hashtabellen

Lineare Sondierung: Elemente Löschen

I Wenn erstes Element in Cluster gelöscht wird, müssen
Nachfolger gelöscht werden.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 30 / 37

B10. Hashtabellen Hashtabellen

Lineare Sondierung: Grössenanpassung

I Ziel: Länge N/M ≤ 1/2

I Alle Elemente müssen neu gehashed werden.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 31 / 37

B10. Hashtabellen Hashtabellen

Implementation und Beispielanwendung

IPython Notebooks: Hashtables.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 32 / 37



B10. Hashtabellen Hashtabellen

Clustering

Beobachtung

Lineares Sondieren führt zu Clusterbildung.

I Bei Kollision wächst ein Cluster, da das Element am Ende
eingefügt wird.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 33 / 37

B10. Hashtabellen Hashtabellen

Clustering

Beobachtung

Lange Cluster wachsen schneller als kurze.

I Wahrscheinlichkeit in einem
grossen Cluster zu landen ist
grösser.

Quelle: Abb. 3.60, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 34 / 37

B10. Hashtabellen Hashtabellen

Clustering

Beobachtung

Laufzeit der Suche hängt von Länge der Cluster ab.

Theorem
In einer auf linearer Sondierung basierenden Hashtabelle mit einer
Liste der Grösse M und N = αM Schlüsseln ist die erforderliche
durchschnittliche Anzahl von Sondierungen für erfolgreiches
beziehungsweise erfolgloses Suchen

∼ 1

2

(
1 +

1

1 − α

)
und ∼ 1

2

(
1 +

1

(1 − α)2

)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 35 / 37

B10. Hashtabellen Hashtabellen

Komplexität

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

BST N N N log2(N) log2(N)
√
N

Rot-Schwarz Bäume log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)
Hashtabellen N N N O(1) O(1) O(1)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 36 / 37



B10. Hashtabellen Hashtabellen

Diskussion

Wann sollen wir welche Art von Datenstruktur verwenden?

Abbildung: Sedgewick & Wayne, Tabelle 3.15

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 37 / 37


	Einführung
	

	Hashfunktionen
	

	Hashtabellen
	


