Algorithmen und Datenstrukturen
B10. Hashtabellen

Marcel Liithi and Gabriele Roger

Universitat Basel

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 1/37

Algorithmen und Datenstrukturen
— B10. Hashtabellen

B10.1 Einfiihrung

B10.2 Hashfunktionen

B10.3 Hashtabellen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

B10. Hashtabellen Einfiihrung

B10.1 Einfiihrung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 3 /37

2 /37
B10. Hashtabellen Einfiihrung
Symboltabellen: Ubersicht
Worst-case Average-case
Implementation suchen einfiigen l6schen suchen (hit) einfiigen |8schen
Verkettete Liste N N N N/2 N N/2
Binidre suche logo(N) N N log, (N) N/2 N
BST N N N log, (N) log,(N) VN
Rot-Schwarz Biume log,(N) logy(N) logy(N) logy(N) log,(N) logy(N)

Frage

Geht es noch besser?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

B10. Hashtabellen Einfiihrung

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

> Wichtigstes Werkzeug: Hashfunktion e
» Berechnet Index aus Schliissel sl 3
Herausforderungen: e

» Hashfunktion berechnen

» Kollisionen (2 unterschiedliche Schliissel
haben gleichen Hashwert)

© ® N & u s w N m O

Index

B10. Hashtabellen Hashfunktionen

B10.2 Hashfunktionen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6 /37

0
“welt” 1
hash(“hallo”) =3
2
* | hallo” 3
hash(“welt”) = 1 4
5
6
7
8
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 5 /37
Index
Swelt” 1
B10. Hashtabellen Hashfunktionen
Hashfunktion: Ziele
» Konsistenz: Gleicher Schliissel sollte immer gleichen Hashwert
ergeben.
» Hashfunktion sollte effizient berechnet werden kdnnen.
» Schliissel sollten gleichverteilt sein.
» gleiche Wahrscheinlichkeit fiir jedes Feld
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 7 /37

B10. Hashtabellen Hashfunktionen

Quiz: Hashfunktion

Was sind mogliche Hashfunktionen fiir
> Integer (32 Bit Ganzzahl)
» Datum
» Strings
> Bilder

Wie aufwiandig ist jeweils die Berechnung der Hashfunktion?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 8 /37

B10. Hashtabellen Hashfunktionen

Hashfunktionen in Java

Alle Java Klassen erben Methode hashCode
Anforderung:

» Falls x.equals(y) dann x.hashCode() == y.hashCode ()
Gewiinscht:
» Falls !'x.equals(y) dann x.hashCode() ! = y.hashCode ()

Wenn immer equals iiberschrieben wird, muss auch hashCode
iberschrieben werden.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9 /37

B10. Hashtabellen

Beispiele von Hashfunktionen in Java

Integer:

public int hashCode() {
return this.value;

}

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Hashfunktionen

10 / 37

B10. Hashtabellen Hashfunktionen

Beispiele von Hashfunktionen in Java

String:

public int hashCode() {
int h = 0;
if (value.length > 0) {
char vall] value;

for (int i = 0; i < value.length; i++) {
h =31 *h + vallil;

}

return h;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11 / 37

B10. Hashtabellen

Beispiele von Hashfunktionen in Java

LinkedList:

public int hashCode() {
int hashCode = 1;
for (E e : this)
hashCode = 31 * hashCode + (e==null 7 0 : e.hashCode());
return hashCode;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Hashfunktionen

12 / 37

B10. Hashtabellen Hashfunktionen
Praktisches Rezept fiir benutzerdefinierte Typen
public int hashCode()
{
int hash = 17;
hash = 31xhash + fieldl.hashCode();
hash = 31*hash + field2.hashCode();
hash = 31xhash + field3.hashCode();
return hash;
}
Funktioniert gut in Praxis - aber theoretisch nicht optimal.
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 13 / 37

B10. Hashtabellen

Praktische Tips

Gute Hashfunktionen zu entwerfen ist schwierig!

Einige Tips:
> Alle Bits im Schliissel sollten bei Berechnung gleich
mitberiicksichtigt werden.
» Verbessert Verteilung!
» Experimentell iiberpriifen (plot?)
» Hashing ist klassischer Performancebug. (Alles lduft korrekt
aber Programm ist langsam.)

» Hashfunktion auf Effizienz priifen.
» Was ist schneller, Vergleich oder Hash?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Hashfunktionen

14 / 37

B10. Hashtabellen Hashfunktionen

Hashfuntionen in Python

» Hashfunktionen werden via die Methode __hash__ angegeben.

_hash__()

Called by built-in function hash() and for operations on members
of hashed collections including set, frozenset, and dict. __hash__()
should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to
mix together the hash values of the components of the object that
also play a part in comparison of objects by packing them into a
tuple and hashing the tuple.

Python Language Reference - Section 3: Data Model

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 15 / 37

B10. Hashtabellen

Modulares Hashing

Werte der Hashfunktion kdnnen negativ sein. Wir wollen aber
Werte zwischen 0 und M.

» Positiven Hash-wert nehmen und Modulo M rechnen.
In Java:

private int modularHash(Key x) {
return (x.hashCode() & Ox7fffffff) 7 M;
}
In Python:

def modularHash(x):
return (hash(x) % ((sys.maxsize + 1) * 2) % M)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

16

Hashfunktionen

37

B10. Hashtabellen Hashfunktionen

B10. Hashtabellen

Hashfunktionen
Theoretische Analyse von Hashtabellen Kollisionen

Typische Annahme

. Wir kénnen Kollisionen nicht verhindern.

Die von uns verwendeten Hashfunktionen verteilen die Schlissel

gleichmaBig und unabhangig voneinander auf die Integer-Werte Beispiele relevanter mathematischer Resultate:
zwischen 0 und M — 1.

Geburtstagsparadox In einer Gruppe von 23 Kindern ist die
Wahrscheinlichkeit 0.5, dass zwei am selben Tag

o Geburtstag haben.
[o » Angewandt auf hashing: Anzahl Plitze:
® o ® o [(JKJ ® M = 365, Nach N = 23 Elementen bereits
0 1 2 3 5 6 7 8 9 10 1 12 13 grosse Chance, dass Kollision auftritt.
> Allgemein: Wir erwarten Kollision nach ungefdhr
Bélle werden zufillig in M verschiedene Gefdsse verteilt.

/7™M /2 Elementen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17 / 37

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

18 / 37

B10. Hashtabellen

Hashfunktionen

B10. Hashtabellen

Hashfunktionen
Kollisionen Experimente

Zjupyter untitled ases
Wir kdnnen Kollisionen nicht verhindern.

B+ x A 0B 4+ M B C Coe

Kemel Help # | Python [Root] O

| & | celloobar & @ @

Beispiele relevanter mathematischer Resultate:

Algorithmen und Datenstrukturen
Sammelbilderproblem Gegeben M Sammelbilder, wieviele Bilder

muss man ziehen (mit zuriicklegen), bevor man jedes

Interaktive Experimente

In 131: Spylab

einmal gezogen hat? B
» Angewandt auf hashing: Wie lange dauert es bis
alle Felder besetzt sind?
» Der Erwartungswert wichst mit ©(M log(M))

400000

Um M = 50 unterschiedliche Sammelbilder zu haben
benétigen wir ungefahr 50 log(50) ~ 200 Bilder

200000

%0 W0 w0 W0 000

IPython Notebooks: Hashtables.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

19 / 37

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

20 / 37

B10. Hashtabellen Hashtabellen B10. Hashtabellen Hashtabellen

Hashtabelle: 2 Implementationen

Grundlage ist immer ein Array der Grésse M um N Eintrige zu
speichern.
Wichtigste Frage: Wie behandle ich Kollisionen?
8103 HaShtabe”en 2 Strategien
> Verkettung (separate chaining)

> Jedes Element enthdlt Verkettete Liste mit allen Schliissel /

Werte Paaren

» M kann kleiner sein als N
» Lineare Sondierung (linear probing)

» M wird grosser gewahlt als N.

» Suche nach nichstem freien Platz.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21 /37 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22 /37
B10. Hashtabellen Hashtabellen B10. Hashtabellen Hashtabellen
Verkettung Komplexitat

Hash: Schlissel wird auf Zahl zwischen 0 und M — 1

gemappt.
Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und

N Schliisseln ist die Wahrscheinlichkeit (unter der

Index P 'n] - Gleichverteilungsannahme), dass die Anzahl der Schliissel in einer
o Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,

extrem nahe an 1.
1 %—f —— null

} In einer auf Verkettung basierenden Hashtabelle mit M Listen und
: N Schliisseln ist die Anzahl der Vergleiche (Gleichheitstests) fiir
BB

Einfligen: Falls nicht gefunden, am Anfang in Liste enfiigen

Suche: Relevante Liste durchsuchen

3
4 Einfiigungen und erfolglose Suchen ~ N /M.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23 /37 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24 / 37

B10. Hashtabellen

Hashtabellen B10. Hashtabellen Hashtabellen
Verkettung: Elemente Loschen Verkettung: Grossenanpassung
» Ziel: Lange N/M bleibt etwa konstant
> Alle Elemente miissen neu gehashed werden.
Index
wy 00 0O @ B
» Einfache Operation: Element aus relevanter Liste l6schen. 0
; { | : [E
1 " null 1 — null
2 - 2 7 s o)
3 3 Index
o §E A OE RSB SR 5] tl
L. @ e
3 .
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25 / 37 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26 / 37
B10. Hashtabellen Hashtabellen B10. Hashtabellen

Hashtabellen

Implementation und Beispielanwendung Informatiker des Tages : Arthur Lee Samuel

Zjupyter untitled ases

File Edit View Insert Cell Kemel Help # | Python [Root] O

B+ & B ¢ N EC Coue Y & Celloobar & @& O

» Professor in Stanford
> Mitentwickler von TEX

» Pionier in Kiinstlicher Intelligenz /
Maschinellem lernen

Algorithmen und Datenstrukturen

Interaktive Experimente

numpy and matplotlin

1n [7]: plot(lin

k)
Outl7): L<matplotiib.linas.Tine2n a

1000000

» Entwickelte erstes erfolgreiches
Dame-Programm.

#0000
00000

> Erste Implementation der linearen
- Sondierungsstrategie in

- | Hashtabellen (1953)
Arthur Lee Samuel
IPython Notebooks: Hashtables.ipynb

200000

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27 / 37

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28 / 37

B10. Hashtabellen

Lineares sondieren

Voraussetzung: M > N
Hash: Schliissel wird auf Zahl j zwischen 0 und M — 1
gemappt.
Einfligen: An Position i einfiigen.

> Falls belegt, probiere Position i +1, i + 2, ...

Suche: Suche an Index i
» Falls nicht leer, aber Eintrag ! = gesuchter
Schliissel, suche an Position i + 1,/ + 2, etc.

Insert S
hash(S)=2

Insert E
hash(E)=0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

< \ [

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

0
]

Insert A
hash(A)=0

B10. Hashtabellen Hashtabellen

Lineare Sondierung: Elemente Loschen

» Wenn erstes Element in Cluster geléscht wird, miissen
Nachfolger geloscht werden.

B10. Hashtabellen

Lineare Sondierung: Grossenanpassung

» Ziel: Lange N/M < 1/2

> Alle Elemente miissen neu gehashed werden.
0 1 2 3 4 5 6
Schltssel E A S R

3 6 8

0 1 2 4 5 7
Schlssel E A

9 10 11 12 13 14 15
R ‘ S
|

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

T ™ T T T ™ T

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Schlussel ‘ E A S H R ‘\ X F ‘ | Q
Was ist wenn hash(l)=7?
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Schlissel E M A S ‘ R X | Q
|
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 30 /
B10. Hashtabellen Hashtabellen

Implementation und Beispielanwendung

ZJupyter Untitied wesmea
File Edt View Inset Cell Kemel Help # | Python [Reat] O

B+ & B ¢ N EC Coue Y B Celloobar & @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

by and matplotlin

[ine2D at 0x29d8be02268> |

1000000

#0000

00000

400000

200000

%0 W0 w0 W0 000

IPython Notebooks: Hashtables.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 32/

B10. Hashtabellen Hashtabellen

Clustering

Beobachtung
Lineares Sondieren fiihrt zu Clusterbildung.

» Bei Kollision wachst ein Cluster, da das Element am Ende
eingefligt wird.

o425 s e lv s ol e s
EEEEEEEEEEEEEEEEEE

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 33 /37

B10. Hashtabellen

Clustering

Beobachtung
Lange Cluster wachsen schneller als kurze.

vorher

» Wahrscheinlichkeit in einem

grossen Cluster zu landen ist -
grosser. i
Quelle: Abb.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Hashtabellen

9/64-Chance, dass der neue
Schliissel dieses Cluster vergrifiert

Schliissel landet in
diesem Fall hier

sesescssesioss

o0s o 000 o s e o

und bildet ein viel
/ lingeres Cluster

. 3.60, Algorithmen, Wayne & Sedgewick

34/

37

B10. Hashtabellen Hashtabellen

Clustering

Beobachtung
Laufzeit der Suche hingt von Linge der Cluster ab.

Theorem

In einer auf linearer Sondierung basierenden Hashtabelle mit einer
Liste der Grésse M und N = oM Schliisseln ist die erforderliche
durchschnittliche Anzahl von Sondierungen fiir erfolgreiches
beziehungsweise erfolgloses Suchen

1 1 1 1
~=(1 ~o (1 —=
e R ()

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 35 /37

B10. Hashtabellen

Hashtabellen

Komplexitat
Worst-case Average-case

Implementation suchen einfiigen léschen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Bin&re suche logo(N) N N log,(N) N/2 N

BST N N N log, (N) log,(N) VN
Rot-Schwarz Biume logy(N) logy(N) logo(N) logy(N) log,(N) logy(N)
Hashtabellen N N N 0(1) 0(1) 0(1)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 36 / 37

B10. Hashtabellen

Diskussion

Hashtabellen

Wann sollen wir welche Art von Datenstruktur verwenden?

implementation |

sequential search
(unordered list)

binary search

(ordered array)

red-black BST

separate chaining

linear probing

search

21gN

N

guarantee

average case

ordered key

ops? interface

delete | search hit | insert delete

N N “N N BN equalsQ
N N e N BN BN v compareTo()
N N 1391gN 1391gN VN v compareTo()
21gN 21gN 10lgN 10lgN 10IgN v conpareTo()
voowoas e s e,
N N 35% 35% 35 ni:::l:g)

Abbildung: Sedgewick & Wayne, Tabelle 3.15

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

37/

37

	Einführung
	

	Hashfunktionen
	

	Hashtabellen
	

