Algorithmen und Datenstrukturen
B6. Symboltabellen

Marcel Lithi and Gabriele Roger

Universitat Basel

Einfiihrung

Einfiihrung S e lementationen

oeo

Ubersicht

—{ Sortieren

Komplexitats-
analyse

| Fundamentale
Datenstrukturen

‘ A&D }——{ Suchen ‘
—{ Graphen ‘
—{ Strings ‘

| | Weiterfiihrende
Themen

Einfiihrung
ooe

Ubersicht iiber nachsten Vorlesungen

Thema: Symboltabellen
m Einfithrung und einfache Implementationen (Diese Woche)
m Bindre Suchbdume (Diese Woche)
m 2-3-Biume und Rot-Schwarz Baume (N&chste Woche)
m Hashtabellen (Ndchste Woche)

Symboltabellen
©000000000

Symboltabellen

Einfiihrung Symboltabellen lementationen
[e]e]e} 0O@00000000 S

Symboltabellen

Abstraktion fiir Schliissel /Werte Paar J

Grundlegende Operationen
m Speichere Schliissel mit dazugehdrendem Wert.
m Suche zu Schliissel gehdrenden Wert.

m Schliissel und Wert ldschen.

Beispiel: DNS

ooeo00000O0 000000 000

Einfiihrung Symboltabellen Einfache Implementationen

m Einfiigen von Domainname (Schlissel) mit gegebener IP

Adresse (Wert)

m Gegeben Domainname, finde IP Adresse

Domainname

IP Adresse

informatik.cs.unibas.ch
www.unibas.ch
www.cs.princeton.edu
www.fsf.org

131.152.227.35
131.152.228.33
128.112.136.11
208.118.235.174

Einfiihrung

Andere Beispiele

Symboltabellen
000@000000

nentationen

Anwendung Zweck der Suche Schliissel Wert

Woérterbuch Definition finden Wort Definition
Websuche Finde Webseite Suchbegriff Liste von Webseiten
Compiler Eigenschaften von Variablen Variablenname Typ / Wert
Dateisystem Finde Datei auf Disk Dateiname Ort auf Disk

Log Finde Events Timestamp Logeintrag

Einfithrung Symboltabellen lementationen

0000@00000

Annahmen

Jeder Schliissel ist eindeutig.
m Werte mit gleichem Schliissel werden ersetzt.

Schliissel sind vergleichbar.

Schliisselgleichheit (Equality) ist definiert.

Schliissel sollen nicht mutierbar sein.

Entspricht verallgemeinerung von Array (mit Schliissel #
Index).

m Wird als Assoziatives Array bezeichnet.

Einfithrung Symboltabellen mentationen

00000e0000

Umsetzung in Programmiersprachen

Symboltabelle werden auch als Map, Assoziatives Array oder
Dictionary bezeichnet.

In Java: Teil der Standardbibliothek
m AbstractMap mit Subklassen HashMap und TreeMap
Map<String, Integer> st = new TreeMap<>();
st.put("aKey", 42);;

st.put ("anotherKey", 17)
Integer value = st.get("aKey");

In Python: Teil der Sprache:

st = {"aKey" : 42, "anotherKey" : 17}
value = st["aKey"]

Symboltabellen: API

class ST[Key, Valuel:

def put(key : Key, value : Value) -> None
def get(key : Key) -> Value

def contains(key : Key) -> Boolean

def delete(key : Key) -> None

def isEmpty() -> Boolean

def size() -> Int

def keys() : Iterator [Keyl]

Symboltabellen
0000000800

Geordnete Symboltabellen: API

Schliissel Werte

min()—>-09:00:00 Chicago
09:00:03 Phoenix

;ﬂAggiQQ;lia-Houston
get(09:00:13) 9:00:59 Chicago
09:01:10 Houston
floor(09:05:00)—=09:03:13 Chicago
09:10:11 Seattle

select(7)—=09:10:25 Seattle

09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—=[09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—09:35:21 Chicago
09:36:14 Seattle

max()—>-09:37:44 Phoenix

size(09:15:00, 09:25:00) ist 5
rank(09:10:25) ist 7

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

Einfiihrung

Symboltabellen
0000000000

Geordnete Symboltabellen: API

m Wenn die Schliissel geordnet werden kdnnen, ldssen sich viele
weitere Operationen definieren:

class ST[Key, Valuel:
def min() -> Key
def max () -> Key
def floor (key Key) -> Key
def ceiling (key Key) -> Key
def rank (key Key) Int
def select(k Int) -> None
def deleteMin() -> None
def deleteMax() -> None
def size(lo Key, hi Key) -> Int
def keys () Iterator [Keyl
def keys(lo Key, hi Key) -> Iterator [Key]

E\rmmylm Symboltabellen Eun I va\umr—nt ationen

000000000 e

Warnung Gleichheit von ObJekten

m Zwei Arten von Gleichheit in OO Sprachen:
Referenzgleichheit (==) Referenzen sind gleich
(gleiches 0Objekt)
Objektgleichheit (equals) Inhalt ist gleich

Implementation von benutzerdefinierten Klassen in Java und
Python vergleicht per Default nur Objekt-Id und nicht Inhalt.

m Methoden equals (Java) und __eq__ (Python) miissen
implementiert werden.

Einfache Implementationen

®00000000

Einfache Implementationen

Einfache Implementationen Binire Suchbiume

Einfiihrung Symboltabelle

0O@0000000 000000000C 000000

Standard Testbeispiel

Bilde eine Symboltabelle bei der der i—te Input mit dem Wert /
assoziiert ist J

Input:
Schliissel [S E A R C H E X A M P L E
Werte 01 2 3 4 5 6 7 8 9 10 11 12

Symboltabelle:

Schlissel E H L
Werte 5 1

C M
4 12 9

5 T
w
o w
~ X

1

Einfache Implementationen

00@000000

Elnfache Implementation 1

Datenstruktur Verkettete Liste von Schliissel /Werte-Paaren
Suchen Elemente durchlaufen bis gefunden oder Listenende
Einfiigen Element in Liste? Wert dndern. Ansonsten: Am
Anfang einfligen.

rote Knoten

0 /siminru

1 wande S5 o S Sgerien

2 4

3 [k[3-[al2] 5[]

4 [R]3] [s]o] umkreiste Eintrige
5

6

7

8

9

n ﬂ “ E sind geiinderte Werte

R {Al2f~{e[6)

[H]s] (R[3] (E[6f~{s]o]

(H]s] R[3~{A[E) o ichs b
[M]o] (R[3f~{al8}~{E[6/—{5]0]

P10 [Plo—~u[9l+{x[7}-{H]s}~{c[a~{rR[3}-{aT8 }={e[6]~[5]0]

L1 II ﬂl IIIEI II II II EI IB [E]6]

> X m T N ® > mMmW®n

Quelle: Abbildung 3.3, Algorithmen, Wayne & Sedgewick

Einfiihrung

Intermezzo: Binary search

Einfache Implementationen
000@00000

m Klassischer Algorithmus zum Suchen in geordnetem Array

m Vergleiche Element mit mittlerem Element des Arrays
m Wiederhole in Teilarray, bis Element gefunden oder Teilarray

leer.
keys[1

erfolgreiche Suchenach? O 1 2 3 4 5 6 7 8 9

To hi mid

094 ACEHLMPRSX /’:VC‘L‘{’;’E% S"{‘;‘;ﬁ"

5 9 7 M P R_S X~

56 5 MR TIN

6 6 6 P roter Eintrag ist a[mid]
erfolglose Suche nach @ Schlefe beendet bei keysmid] = P: liefert 6 zuriick

1o hi mid

094 ACEHLMPRSX

59 7 M PR S X

565 MoP

766 p

™\ Schlife eendet bei o > i lifrt 7 urtck

Quelle: Abbildung 1.9, Algorithmen, Wayne & Sedgewick

def binarysearch(a, value):

lo, hi = 0, len(a) - 1
while lo <= hi:
mid = (lo + hi) // 2
if al[mid] < value:
lo = mid + 1
elif value < al[mid]:
hi = mid - 1
else:
return mid
return None

Einfiihrung S Einfache Implementationen

0O000@0000

Die Rank Funktion

m Gibt Anzahl Elemente zuriick die kleiner als Schliissel sind
m Entspricht genau Index in Array

keys[] def _rank(a, value):
erfolgreiche Suchenach? 0 1 2 3 4 5 6 7 8 9 1o = 0
lo hi mid schwarze Eintrage P -
09 4 ACEHLMPRS X s b hi = len(a) 1
S0 MOP RS xR while lo <= hi:
565 MR RN ° :
6 6 6 P\ roter Eintrag ist a[mid] mid = (lo + hi) // 2
erfolglose Suche nach Q Schleife beendet bei keys[mid] = P: liefert 6 zuruck if al[mid] < value:
Tlo hi mid
09 4 ACEHLMPRS X lo = mid + 1
: z: u gR s X elif value < al[mid]:
7.6 6 P hi = mid - 1
Schleife beendet bei 1o > hi: liefert 7 zurtick .
™~ else:

return mid
Quelle: Abbildung 3.6, Algorithmen return lo

Wayne & Sedgewick

Einfache Implementationen

Einfiihrung
[e]e]e} 0O0000e000

Einfache Implementation 2

Datenstruktur Geordnetes Array von Schliissel/Werte-Paaren
Hilfsfunktion rank Anzahl Elemente < k (index in Array)
Operationen:

get: Nutze rank um direkt auf richtiges Element
zuzugreifen.
m Teste ob wirklich richtiges Element an dieser
Stelle ist
put: Nutze rank um Stelle zu finden wo eingefiigt/ersetzt
werden muss.

Details: Jupyter Notebook: Symboltable.ipynb

Einfiihrung S e Einfache Implementationen

0O00000e00

Komplexitat
Worst-case Average-case
Implementation suchen einfiigen suchen einfiigen
Verkettete Liste N N N/2 N

Binare suche logo(N) N logo(N) N/2

Eumw rung Symboltabelle Einfache Implementationen

000000080

Geordnete Symboltabellen: Komplexitat

Verkettete Liste Bindrsuche

suche O(N) O(log V)
einfiigen / 16schen O(N) O(N)
min / max O(N) 0(1)
floor /ceiling O(N) log(N)

rank O(N) O(log(N))
select O(N) ()

iteration (geordnet) N log(N)

Einfiihrung

Einfache Implementationen hb

ime

0O0000000e

Implementation

Zjupyter untitied aua
Fle Edt Vew et Col Kemel Help

B+ x A0 4 ¢ N EC coe

| Python [Roof] O
- @ Cellobr & @ O

Algorithmen und Datenstrukturen

Interaktive Experimente
In (31: %pylab inline

Populating the interactive namespace from numpy and matplotlib
In 171: | plot (Linspace (0, 1000), (Linspace(0,1000) **2))

Out[7]: [<matplotlib.lines.Tine2D at 0x29d8ba022a8>]

1000000

800000

00000

200000

200000

20 0 EQ 0 000

m Ausfiihrliche Diskussion und Implementation
Jupyter-Notebook: Symboltable-ordered.ipynb

Bindre Suchbaume

900000000000 000000000

Bindare Suchbaume

Einfiihrung

Binare Suchbdume

Ein Binarer Suchbaum ist ein Bindrbaum mit symmetrischer

Ordnung

Bindre Suchbaume

O@0000000000000000000

Ein Bindrbaum ist
m der leere Baum, oder

m eine Wurzel mit einem linken und
einem rechten Unterbaum

Symetrische Ordnung
Der Schliissel jedes Knotens ist

m grosser als alle Schliissel im linken
Teilbaum

m kleiner als alle Schliissel im rechten
Teilbaum

Wurzel

eine linke Referenz

ein Teilbaum

g

Elternknoten von A und R

rechter
Kindknoten
der Wurzel
null-Referenzen

Schliissel

linke
Referenz

von E

(RO Wert, der

\ lert, der

© (HJ mit R ver-

bunden ist

/ \
Schliissel Schliissel

kleiner als grofer als €

Quelle: Abb. 3.8 / 3.9, Algorithmen, Wayne
& Sedgewick

Einfiihrung p e Bindre Suchbaume

0000000000000 0000000

Implementation

class Node[Key, Valuel:

Auf Key muss Ordnungsrelation
defintert sein

Node (key : Key, value : Value)
key : Key
value : Value

left : Node[Key, Value]
right : Node[Key, Valuel

m Implementation Symboltabelle: Referenz zu Wurzel Knoten

Einfiihrung S mentationen Bindre Suchbaume

000@00000000000000000

Reprasentation in Code (mit Zahler)

m Attribute Count z3hlt die Anzahl Knoten im Unterbaum
m Erlaubt effiziente Implementation von Operation size
m Kein Traversieren vom Baum ndétig.

class Node[Key, Valuel:

Auf Key muss Ordnungsrelation
defintert sein

Node (key : Key, value : Value)

key : Key

value : Value

left : Node[Key, Valuel
right : Node[Key, Valuel
count : Int

Einfiihrung p e Bindre Suchbaume

Suche in Binarbaum

m Um get zu implementieren, miissen wir effizient suchen
konnen.
Suche nach Schliissel k: Prinzip:
Fall 1: k < Schliissel in Knoten
m Gehe nach links

erfolgreiche Suche nach R

R st kleiner als S,
deshalb links suchen

Fall 2: k > Schliissel in Knoten
m Gehe nach rechts

Fall 3: k = Schliissel in Knoten
m Gefunden

deshalb Wert zuriickgeben

Quelle: Abb. 3.11, Algorithmen, Wayne &
Sedgewick

000080000000 000000000

Einfiihrung

Suche in Binarbaum

Bindre Suchbaume
0000®0000000000000000

m Um get zu implementieren, miissen wir effizient suchen

konnen.

Suche nach Schliissel k: Prinzip:
Fall 1: k < Schliissel in Knoten
m Gehe nach links
Fall 2: k > Schliissel in Knoten
m Gehe nach rechts
Fall 3: k = Schliissel in Knoten
m Gefunden

erfolglose Suche nach T

T ist grofer als S,
(M) deshals rechts suchen

R

T ist kleiner als X,
deshalb links suchen

Referenz ist null, desha
ist T nicht im Baum
(erfolglose Suche)

Quelle: Abb. 3.11, Algorithmen, Wayne &

Sedgewick

Einfiihrung

Bindre Suchbaume

0O0000e000000000000000

Suche in Binarbaum

m Die Suche, ausgehend von Knoten root kann einfach rekursiv
implementiert werden.
m Suche wird einfach in "richtigem” Teilbaum fortgesetzt.

def get(key, root):

if root ==
return
elif key <
return
elif key >
return

None:

None

root.key:

get (key, root.left)
root.key:

get (key, root.right)

elif key == root.key:

return

root.value

Einfiihrung

Bindre Suchbaume

000000800000 000000000

Einfligen in Bindarbaum
m put Idsst sich fast so einfach wie get implementieren.

L einfugen

Suche nach L _—~"

Suche nach Schliissel. cndetan dicer
Zwei Falle:

m Schliissel gefunden — Wert neu

setzen :I,iifﬂ‘;:ff:.’!;#@
m Schlissel nicht in Baum — Neuen o
Knoten hinzufiigen. s
\ 3

Setzt die Referenzen ./
neu und erhoht die
Ziihler auf dem
Weg nach oben

Quelle: Abb. 3.12, Algorithmen, Wayne &
Sedgewick

Einfiihrung eme e Bindre Suchbaume

0000000 @0000000000000

Einfligen in Bindarbaum

m Die Operation put ausgehen von Knoten root kann einfach
rekursiv implementiert werden.

m Auf dem "Riickweg" wird der Zahler fiir die Anzahl Knoten im
Unterbaum aktualisiert.

m Beachte: Teilbaum wird in jeder Rekursion neu gesetzt.

def put(key, value, root):
if (root == None):
return Node(key, value, count = 1)
elif key < root.key:
root.left = put(key, value, root.left)
elif key > root.key:
root.right = put(key, value, root.right)

elif key == root.key:
root.value = value
root.count = 1 + size(root.left) + size(root.right)

return root

Einfiihrung S ementationen Bindre Suchbaume

0O0000000e000000000000

Auspragung des Binarbaums

m Selbe Menge von Schliisseln fiihrt zu verschiedene Baumen
m hingt von Einfiigereihenfolge ab.

typischer Fall

schlimmster
Fall

bester Fall 0
(Q (S)
(a)) (RS (X

Quelle: Abb. 3.14, Algorithmen, Wayne & Sedgewick

Bindre Suchbaume
000000000800000000000

Geordnete Symboltabellen: API

Schliissel Werte

min()—>-09:00:00 Chicago
09:00:03 Phoenix

;ﬂAggiQQ;lia-Houston
get(09:00:13) 9:00:59 Chicago
09:01:10 Houston
floor(09:05:00)—=09:03:13 Chicago
09:10:11 Seattle

select(7)—=09:10:25 Seattle

09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—=[09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—09:35:21 Chicago
09:36:14 Seattle

max()—>-09:37:44 Phoenix

size(09:15:00, 09:25:00) ist 5
rank(09:10:25) ist 7

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

Bindre Suchbaume
000000000080000000000

Quiz: Minimum und Maximum

Minimum Kleinster Schliissel in Symboltabelle

Maximum Grosster Schliissel in Symboltabelle

m Wie finden wir Minimum und Maximum?

Bindre Suchbaume
00000000000e000000000

Quiz: Floor und Ceiling

Floor Grosster Schliissel < gegebener Schliissel
Ceiling Kleinster Schliissel > gegebener Schliissel

mEl //@\@

~

o ol
O ®

e
©

m Wie finden wir Floor und Ceiling?

mentationen

Ordnungsbasierte Operationen

ZJupyter untitled wes

Fle Edt View Inset Cell Kemel Help

| Python [Roof] O

B+ 5 @B A% M EC coe - & Celfoobar & & ©

Algorithmen und Datenstrukturen

Interaktive Experimente
in [3]: %pylab inline
topulating the interactive namespac

o from numpy and matplotlib

In [71: | plot (Linspace (0, 1000), (1l

Outl71: I<matplotlib.lines.Line2D at 0x29dsbe02zes>]
1000000
00000
00000
00000
200000
20 w0 £ EQ 00

m Ordnungsbasierten Operationen sind einfach zu
implementieren.

m Ausfiihrliche Diskussion und Implementation
Jupyter-Notebook: BinarySearchTrees.ipynb

Bindre Suchbaume

000000000000 e00000000

Einfiihrung Sy Implementationen Bindre Suchbaume

000000000 0000000000000 e0000000

Loschen von Knoten: Einfache Methode

Einfachste Methode zum Loschen: Tombstone

m Finde Knoten

m Markiere diesen als gelscht (z.B. indem Wert auf null
gesetzt wird).

m Schlissel bleibt im Baum

Delete (R)

Problem: Speicherverschwendung bei vielen geléschten
Elementen.

mentationen Bindre Suchbaume

0000000000000 0e000000

Loschen von minimalem Key

m Nach Links bis linker Knoten null ist
m Diesen Knoten durch rechten Knoten ersetzten
m Knotenzidhler count aktualisieren.

def deleteMin(root):

if root.left == None:
return root.right
else:
root.left = deleteMin(x.left);
root.count = 1 + size(root.left) + size(root.right);

return root

links gehen, die rechte Referenz Referenzen und Knotenzihlung
bis die linke dieses Knotens nach den rekursiven
null-Referenz zuriickliefern Aufrufen aktualisieren
erreicht wird

AN WA
| "

verfiigbar fiir die
Speicherbereinigung

Quelle: Abb. 3.19, Algorithmen, Wayne & Sedgewick

nentationen Bindre Suchbaume

Einfiihrung

Loschen nach Hibbard

0000000000000V 0e00000

m Knoten t mit zu |6schendem Schliissel suchen.
Fall 1: Keine Kinder

Knotenzéhler aktualisieren

\\ 5 S
1 B
X A
T Auf leeren Baum (null)
setzen

Zu léschender Knoten

m Parent von t auf leeren Baum (null) setzen.

m Knotenzihler count aktualisieren.

nentationen Bindre Suchbaume
000000000000000080000

Einfiihrung S

Loschen nach Hibbard

m Knoten t mit zu |6schendem Schliissel suchen.
Fall 2: 1 Kind

Knotenzéhler aktualisieren 7

6/0
Zu loschender Knoten /

Durch Kind ersetzen

m Parent von t neu setzen

m Knotenzidhler count aktualisieren.

Einfiihrung S mentationen Bindre Suchbaume

Loschen nach Hibbard

m Knoten t mit zu |dschendem Schlissel suchen.
Fall 3: 2 Kinder

m Kleinster Knoten x im rechten Unterbaum von t suchen
m Kleinster Knoten im Unterbaum |éschen (deleteMin)
m x anstelle von t setzten

m Knotenzidhler count aktualisieren.

Einfiihrung S e lementationen Bindre Suchbaume

000000000000 000000e00

Loschen nach Hibbard: Probleme

m Warum wird durch Nachfolger und nicht Vorgdnger ersetzt?
m Entscheidung willkiirlich und unsymmetrisch.

m Konsequenz: Biaume nicht zufdllig = Performanceeinbussen

m Praxis: Manchmal Vorgidnger und manchmal Nachfolger
verwenden.

Offenes Problem!

Elegante und effiziente Lésung fiir Loschen in Bindrbaum.

Einfiihrung a Einfache Implementationen Bindre Suchbaume

000000000000 0000000e0

Komplexitat
Worst-case Average-case
Implementation suchen einfiigen ldschen suchen (hit) einfiigen I8schen
Verkettete Liste N N N N/2 N N/2
Bindre suche logo(N) N N log,(N) N/2 N

Bindrer Suchbaum N N N log,(N) logo(N) VN

Bindre Suchbaume
00000000000000000000

Implementation

ZJupyter untitied wses

File Edt View Inset Cell Kemel Help

| Python [Roo] O
B+ x AMB A v N EC coe

= Cellobar & & B

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline
Papulating the interactive namespace from numpy and matplotlib

In [7]: plot(linspace(0, 1000), (linspace(0,1000) **2))
OuL[7]: [<matplotlib.lines.Lire2D at 0x29ds

12208>]
1000000

800000

00000

400000

200000

20 %0 EQ 0

Jupyter-Notebook: BinarySearchTrees.ipynb

	Einführung
	

	Symboltabellen
	

	Einfache Implementationen
	

	Binäre Suchbäume
	

