
Algorithmen und Datenstrukturen
B6. Symboltabellen

Marcel Lüthi and Gabriele Röger

Universität Basel

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Einführung

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Übersicht

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Weiterführende
Themen

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Übersicht über nächsten Vorlesungen

Thema: Symboltabellen

Einführung und einfache Implementationen (Diese Woche)

Binäre Suchbäume (Diese Woche)

2-3-Bäume und Rot-Schwarz Bäume (Nächste Woche)

Hashtabellen (Nächste Woche)

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Symboltabellen

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Symboltabellen

Abstraktion für Schlüssel/Werte Paar

Grundlegende Operationen

Speichere Schlüssel mit dazugehörendem Wert.

Suche zu Schlüssel gehörenden Wert.

Schlüssel und Wert löschen.

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Beispiel: DNS

Einfügen von Domainname (Schlüssel) mit gegebener IP
Adresse (Wert)

Gegeben Domainname, finde IP Adresse

Domainname IP Adresse

informatik.cs.unibas.ch 131.152.227.35
www.unibas.ch 131.152.228.33
www.cs.princeton.edu 128.112.136.11
www.fsf.org 208.118.235.174

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Andere Beispiele

Anwendung Zweck der Suche Schlüssel Wert
Wörterbuch Definition finden Wort Definition
Websuche Finde Webseite Suchbegriff Liste von Webseiten
Compiler Eigenschaften von Variablen Variablenname Typ / Wert
Dateisystem Finde Datei auf Disk Dateiname Ort auf Disk
Log Finde Events Timestamp Logeintrag

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Annahmen

Jeder Schlüssel ist eindeutig.

Werte mit gleichem Schlüssel werden ersetzt.

Schlüssel sind vergleichbar.

Schlüsselgleichheit (Equality) ist definiert.

Schlüssel sollen nicht mutierbar sein.

Entspricht verallgemeinerung von Array (mit Schlüssel 6=
Index).

Wird als Assoziatives Array bezeichnet.

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Umsetzung in Programmiersprachen

Symboltabelle werden auch als Map, Assoziatives Array oder
Dictionary bezeichnet.

In Java: Teil der Standardbibliothek

AbstractMap mit Subklassen HashMap und TreeMap

Map<String, Integer> st = new TreeMap<>();

st.put("aKey", 42);;

st.put("anotherKey", 17)

Integer value = st.get("aKey");

In Python: Teil der Sprache:

st = {"aKey" : 42, "anotherKey" : 17}

value = st["aKey"]

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Symboltabellen: API

class ST[Key , Value]:

def put(key : Key , value : Value) -> None

def get(key : Key) -> Value

def contains(key : Key) -> Boolean

def delete(key : Key) -> None

def isEmpty () -> Boolean

def size() -> Int

def keys() : Iterator[Key]

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Geordnete Symboltabellen: API

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Geordnete Symboltabellen: API

Wenn die Schlüssel geordnet werden können, lässen sich viele
weitere Operationen definieren:

class ST[Key , Value]:

...

def min() -> Key

def max() -> Key

def floor(key : Key) -> Key

def ceiling(key : Key) -> Key

def rank(key : Key) : Int

def select(k : Int) -> None

def deleteMin () -> None

def deleteMax () -> None

def size(lo : Key , hi : Key) -> Int

def keys() : Iterator[Key]

def keys(lo : Key , hi : Key) -> Iterator[Key]

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Warnung: Gleichheit von Objekten

Zwei Arten von Gleichheit in OO Sprachen:

Referenzgleichheit (==) Referenzen sind gleich

(gleiches Objekt)

Objektgleichheit (equals) Inhalt ist gleich

Achtung!

Implementation von benutzerdefinierten Klassen in Java und
Python vergleicht per Default nur Objekt-Id und nicht Inhalt.

Methoden equals (Java) und eq (Python) müssen
implementiert werden.

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Einfache Implementationen

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Standard Testbeispiel

Bilde eine Symboltabelle bei der der i−te Input mit dem Wert i
assoziiert ist

Input:

Schlüssel S E A R C H E X A M P L E
Werte 0 1 2 3 4 5 6 7 8 9 10 11 12

Symboltabelle:

Schlüssel A C E H L M P R S X
Werte 8 4 12 5 11 9 10 3 0 7

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Einfache Implementation 1

Datenstruktur Verkettete Liste von Schlüssel/Werte-Paaren
Suchen Elemente durchlaufen bis gefunden oder Listenende

Einfügen Element in Liste? Wert ändern. Ansonsten: Am
Anfang einfügen.

Quelle: Abbildung 3.3, Algorithmen, Wayne & Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Intermezzo: Binary search

Klassischer Algorithmus zum Suchen in geordnetem Array

Vergleiche Element mit mittlerem Element des Arrays
Wiederhole in Teilarray, bis Element gefunden oder Teilarray
leer.

Quelle: Abbildung 1.9, Algorithmen, Wayne & Sedgewick

def binarysearch(a, value):

lo, hi = 0, len(a) - 1

while lo <= hi:

mid = (lo + hi) // 2

if a[mid] < value:

lo = mid + 1

elif value < a[mid]:

hi = mid - 1

else:

return mid

return None

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Die Rank Funktion

Gibt Anzahl Elemente zurück die kleiner als Schlüssel sind

Entspricht genau Index in Array

Quelle: Abbildung 3.6, Algorithmen
Wayne & Sedgewick

def _rank(a, value):

lo = 0

hi = len(a) - 1

while lo <= hi:

mid = (lo + hi) // 2

if a[mid] < value:

lo = mid + 1

elif value < a[mid]:

hi = mid - 1

else:

return mid

return lo

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Einfache Implementation 2

Datenstruktur Geordnetes Array von Schlüssel/Werte-Paaren

Hilfsfunktion rank Anzahl Elemente < k (index in Array)

Operationen:

get: Nutze rank um direkt auf richtiges Element
zuzugreifen.

Teste ob wirklich richtiges Element an dieser
Stelle ist

put: Nutze rank um Stelle zu finden wo eingefügt/ersetzt
werden muss.

Details: Jupyter Notebook: Symboltable.ipynb

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Komplexität

Worst-case Average-case
Implementation suchen einfügen suchen einfügen

Verkettete Liste N N N/2 N
Binäre suche log2(N) N log2(N) N/2

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Geordnete Symboltabellen: Komplexität

Verkettete Liste Binärsuche

suche O(N) O(logN)
einfügen / löschen O(N) O(N)

min / max O(N) O(1)
floor /ceiling O(N) log(N)

rank O(N) O(log(N))
select O(N) O(1)

iteration (geordnet) N log(N) N

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Implementation

Ausführliche Diskussion und Implementation
Jupyter-Notebook: Symboltable-ordered.ipynb

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Binäre Suchbäume

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Binäre Suchbäume

Ein Binärer Suchbaum ist ein Binärbaum mit symmetrischer
Ordnung

Ein Binärbaum ist

der leere Baum, oder

eine Wurzel mit einem linken und
einem rechten Unterbaum

Symetrische Ordnung
Der Schlüssel jedes Knotens ist

grösser als alle Schlüssel im linken
Teilbaum

kleiner als alle Schlüssel im rechten
Teilbaum Quelle: Abb. 3.8 / 3.9, Algorithmen, Wayne

& Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Implementation

class Node[Key , Value]:

Auf Key muss Ordnungsrelation

definiert sein

Node(key : Key , value : Value)

key : Key

value : Value

left : Node[Key , Value]

right : Node[Key , Value]

Implementation Symboltabelle: Referenz zu Wurzel Knoten

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Repräsentation in Code (mit Zähler)

Attribute Count zählt die Anzahl Knoten im Unterbaum

Erlaubt effiziente Implementation von Operation size

Kein Traversieren vom Baum nötig.

class Node[Key , Value]:

Auf Key muss Ordnungsrelation

definiert sein

Node(key : Key , value : Value)

key : Key

value : Value

left : Node[Key , Value]

right : Node[Key , Value]

count : Int

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Suche in Binärbaum

Um get zu implementieren, müssen wir effizient suchen
können.

Suche nach Schlüssel k : Prinzip:

Fall 1: k < Schlüssel in Knoten

Gehe nach links

Fall 2: k > Schlüssel in Knoten

Gehe nach rechts

Fall 3: k = Schlüssel in Knoten

Gefunden

Quelle: Abb. 3.11, Algorithmen, Wayne &
Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Suche in Binärbaum

Um get zu implementieren, müssen wir effizient suchen
können.

Suche nach Schlüssel k : Prinzip:

Fall 1: k < Schlüssel in Knoten

Gehe nach links

Fall 2: k > Schlüssel in Knoten

Gehe nach rechts

Fall 3: k = Schlüssel in Knoten

Gefunden

Quelle: Abb. 3.11, Algorithmen, Wayne &
Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Suche in Binärbaum

Die Suche, ausgehend von Knoten root kann einfach rekursiv
implementiert werden.

Suche wird einfach in ”richtigem” Teilbaum fortgesetzt.

def get(key , root):

if root == None:

return None

elif key < root.key:

return get(key , root.left)

elif key > root.key:

return get(key , root.right)

elif key == root.key:

return root.value

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Einfügen in Binärbaum

put lässt sich fast so einfach wie get implementieren.

Suche nach Schlüssel.
Zwei Fälle:

Schlüssel gefunden → Wert neu
setzen

Schlüssel nicht in Baum → Neuen
Knoten hinzufügen.

Quelle: Abb. 3.12, Algorithmen, Wayne &
Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Einfügen in Binärbaum

Die Operation put ausgehen von Knoten root kann einfach
rekursiv implementiert werden.

Auf dem ”Rückweg” wird der Zähler für die Anzahl Knoten im
Unterbaum aktualisiert.

Beachte: Teilbaum wird in jeder Rekursion neu gesetzt.

def put(key , value , root):

if (root == None):

return Node(key , value , count = 1)

elif key < root.key:

root.left = put(key , value , root.left)

elif key > root.key:

root.right = put(key , value , root.right)

elif key == root.key:

root.value = value

root.count = 1 + size(root.left) + size(root.right)

return root

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Ausprägung des Binärbaums

Selbe Menge von Schlüsseln führt zu verschiedene Bäumen

hängt von Einfügereihenfolge ab.

Quelle: Abb. 3.14, Algorithmen, Wayne & Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Geordnete Symboltabellen: API

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Quiz: Minimum und Maximum

Minimum Kleinster Schlüssel in Symboltabelle

Maximum Grösster Schlüssel in Symboltabelle

Wie finden wir Minimum und Maximum?

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Quiz: Floor und Ceiling

Floor Grösster Schlüssel ≤ gegebener Schlüssel

Ceiling Kleinster Schlüssel ≥ gegebener Schlüssel

Wie finden wir Floor und Ceiling?

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Ordnungsbasierte Operationen

Ordnungsbasierten Operationen sind einfach zu
implementieren.

Ausführliche Diskussion und Implementation
Jupyter-Notebook: BinarySearchTrees.ipynb

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Löschen von Knoten: Einfache Methode

Einfachste Methode zum Löschen: Tombstone

Finde Knoten

Markiere diesen als gelöscht (z.B. indem Wert auf null
gesetzt wird).

Schlüssel bleibt im Baum

Problem: Speicherverschwendung bei vielen gelöschten
Elementen.

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Löschen von minimalem Key

Nach Links bis linker Knoten null ist
Diesen Knoten durch rechten Knoten ersetzten
Knotenzähler count aktualisieren.

def deleteMin(root):

if root.left == None:

return root.right

else:

root.left = deleteMin(x.left);

root.count = 1 + size(root.left) + size(root.right);

return root

Quelle: Abb. 3.19, Algorithmen, Wayne & Sedgewick

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Löschen nach Hibbard

Knoten t mit zu löschendem Schlüssel suchen.

Fall 1: Keine Kinder

Parent von t auf leeren Baum (null) setzen.

Knotenzähler count aktualisieren.

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Löschen nach Hibbard

Knoten t mit zu löschendem Schlüssel suchen.

Fall 2: 1 Kind

Parent von t neu setzen

Knotenzähler count aktualisieren.

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Löschen nach Hibbard

Knoten t mit zu löschendem Schlüssel suchen.

Fall 3: 2 Kinder

Kleinster Knoten x im rechten Unterbaum von t suchen

Kleinster Knoten im Unterbaum löschen (deleteMin)

x anstelle von t setzten

Knotenzähler count aktualisieren.

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Löschen nach Hibbard: Probleme

Warum wird durch Nachfolger und nicht Vorgänger ersetzt?

Entscheidung willkürlich und unsymmetrisch.

Konsequenz: Bäume nicht zufällig ⇒ Performanceeinbussen

Praxis: Manchmal Vorgänger und manchmal Nachfolger
verwenden.

Offenes Problem!

Elegante und effiziente Lösung für Löschen in Binärbaum.

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Komplexität

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

Binärer Suchbaum N N N log2(N) log2(N)
√
N

Einführung Symboltabellen Einfache Implementationen Binäre Suchbäume

Implementation

Jupyter-Notebook: BinarySearchTrees.ipynb

	Einführung
	

	Symboltabellen
	

	Einfache Implementationen
	

	Binäre Suchbäume
	

