Algorithmen und Datenstrukturen
B6. Symboltabellen

Marcel Liithi and Gabriele Roger

Universitat Basel

Algorithmen und Datenstrukturen

— B6. Symboltabellen

B6.1 Einfiihrung

B6.2 Symboltabellen

B6.3 Einfache Implementationen

B6.4 Binare Suchbidume

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 1/ 45
B6. Symboltabellen Einfiihrung
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 3 /45

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2/ 45
B6. Symboltabellen Einfiihrung
Ubersicht
—{ Sortieren
Komplexitats-
| analyse
| Fundamentale
Datenstrukturen
A>T s
—{ Graphen ‘
—{ Strings ‘
|| Weiterfiihrende
Themen
M. Liithi, G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 4 / 45

B6. Symboltabellen Einfiihrung

Ubersicht iiber nichsten Vorlesungen

Thema: Symboltabellen
» Einfiihrung und einfache Implementationen (Diese Woche)
» Binire Suchbidume (Diese Woche)
» 2-3-Biume und Rot-Schwarz Biume (N&chste Woche)
» Hashtabellen (Nachste Woche)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 5 /45

B6. Symboltabellen

B6.2 Symboltabellen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Symboltabellen

B6. Symboltabellen Symboltabellen

Symboltabellen

Abstraktion fiir Schliissel/Werte Paar

Grundlegende Operationen
» Speichere Schliissel mit dazugehdrendem Wert.
» Suche zu Schliissel gehérenden Wert.
» Schliissel und Wert l6schen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 7 /45

B6. Symboltabellen

Beispiel: DNS

» Einfiigen von Domainname (Schliissel) mit gegebener IP
Adresse (Wert)

» Gegeben Domainname, finde IP Adresse

Symboltabellen

Domainname IP Adresse
informatik.cs.unibas.ch 131.152.227.35
www.unibas.ch 131.152.228.33
www.cs.princeton.edu 128.112.136.11
www.fsf.org 208.118.235.174
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 8 / 45

B6. Symboltabellen Symboltabellen

Andere Beispiele

B6. Symboltabellen

Annahmen

» Jeder Schliissel ist eindeutig.

> Werte mit gleichem Schliissel werden ersetzt.

» Schliissel sind vergleichbar.

» Schliisselgleichheit (Equality) ist definiert.

» Schlissel sollen nicht mutierbar sein.

» Entspricht verallgemeinerung von Array (mit Schliissel #

Index).

> Wird als Assoziatives Array bezeichnet.

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

Symboltabellen

10 / 45

Anwendung Zweck der Suche Schliissel Wert

Woérterbuch Definition finden Wort Definition

Websuche Finde Webseite Suchbegriff Liste von Webseiten

Compiler Eigenschaften von Variablen ~ Variablenname Typ / Wert

Dateisystem Finde Datei auf Disk Dateiname Ort auf Disk

Log Finde Events Timestamp Logeintrag
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9 /45
B6. Symboltabellen Symboltabellen

Umsetzung in Programmiersprachen

Symboltabelle werden auch als Map, Assoziatives Array oder
Dictionary bezeichnet.

In Java: Teil der Standardbibliothek
> AbstractMap mit Subklassen HashMap und TreeMap
Map<String, Integer> st = new TreeMap<>();
st.put ("aKey", 42);;
st.put ("anotherKey", 17)
Integer value = st.get("aKey");

In Python: Teil der Sprache:

st = {"aKey" : 42, "anotherKey" : 17}
value = st["aKey"]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11 / 45

B6. Symboltabellen

Symboltabellen: API

class STI[Key,

def put (key

Valuel:

def get(key : Key) -> Value

def contains(key : Key) -> Boolean

def delete(key : Key) -> None
def isEmpty() -> Boolean

def size()
def keys ()

M. Liithi, G. Réger (Universitit Basel)

-> Int
Iterator [Key]

Algorithmen und Datenstrukturen

Key, value : Value)

Symboltabellen

12 / 45

B6. Symboltabellen

Geordnete Symboltabellen: API

Schliissel Werte

min()—=09:00:00 Chicago
09:00:03 Phoenix

~~Aggi__g,:_llr--Hous.ton
get(09:00:13) 9:00:59 Chicago

09:01:10 Houston
floor(09:05:00)—-09:03:13 Chicago
09:10:11 Seattle
select(7)—=09:10:25 Seattle
09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—=|09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—=09:35:21 Chicago
09:36:14 Seattle

max()—=09:37:44 Phoenix

5ize(09:15:00, 09:25:00) ist 5
rank(09:10:25) ist 7

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Symboltabellen

13 / 45

B6. Symboltabellen Symboltabellen

Geordnete Symboltabellen: API

» Wenn die Schliissel geordnet werden kdnnen, ldssen sich viele
weitere Operationen definieren:

class ST[Key, Valuel:

def min() -> Key
def max() -> Key

def floor(key : Key) -> Key
def ceiling(key : Key) -> Key

def rank(key : Key) : Int
def select(k : Int) -> None

def deleteMin() -> None
def deleteMax () -> None

def size(lo : Key, hi : Key) -> Int

def keys() : Iterator [Key]
def keys(lo : Key, hi : Key) -> Iterator [Key]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 14 / 45

B6. Symboltabellen

Warnung: Gleichheit von Objekten

» Zwei Arten von Gleichheit in OO Sprachen:

Referenzgleichheit (==) Referenzen sind gleich
(gleiches Objekt)
Objektgleichheit (equals) Inhalt ist gleich

Achtung!
Implementation von benutzerdefinierten Klassen in Java und

Python vergleicht per Default nur Objekt-Id und nicht Inhalt.

» Methoden equals (Java) und __eq__ (Python) miissen
implementiert werden.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Symboltabellen

15 / 45

B6. Symboltabellen Einfache Implementationen

B6.3 Einfache Implementationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16 / 45

B6. Symboltabellen Einfache Implementationen

Standard Testbeispiel

Bilde eine Symboltabelle bei der der i—te Input mit dem Wert J
assoziiert ist

B6. Symboltabellen Einfache Implementationen

Einfache Implementation 1

Datenstruktur Verkettete Liste von Schliissel /Werte-Paaren
Suchen Elemente durchlaufen bis gefunden oder Listenende
Einfligen Element in Liste? Wert dndern. Ansonsten: Am
Anfang einfiigen.

§ﬁ$r

) @ irst rote Knoten

0 /siudnm

1 wrds Loy St oo

2 /

3 [RI3HAl2] (s[o]

4 ﬂ n umbkreiste Eintrage

5 [c[a (R[] [5 [eemere e

6 [C[aF~{Rr]3])

7 [z {n[sHHc]af{rR[3}A]2}~{E[6}~s]o]

8 (R[3H{ALE) o wiht et

o [m]o] (H]s] (R[3}~{a]8]~{E[6}—~{s]0]

P10 [plio—{u]o] (W[5 -{claf~{rR[3]~{as]~{e[e]~[s]o]

L [P 10—~{m 5] (R[3F—~{a[8]~{e]s]
[L[aap~{PTro Mo -{x[7}~ H]5] [RI3F-{A[s}~{E]E)

E 12

> X m T A ® > m wn

=

Quelle: Abbildung 3.3, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18 / 45

Input:
Schlissel |[S ' E A R C H E X A M P L E
Werte 01 2 3 4 5 6 7 8 9 10 11 12
Symboltabelle:
Schliissel [T A°- C E H L M P R S X
Werte 8 4 12 5 1 9 10 3 0 7
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17 / 45
B6. Symboltabellen Einfache Implementationen

Intermezzo: Binary search

» Klassischer Algorithmus zum Suchen in geordnetem Array
> Vergleiche Element mit mittlerem Element des Arrays
» Wiederhole in Teilarray, bis Element gefunden oder Teilarray
leer.

def binarysearch(a, value):
erfolgreiche SuchenachP 0 1 2 3k:ysgj 67 8 9 lo, hi = 0, len(a) - 1
while lo <= hi:

; L mid = (lo + hi) // 2
o " roter Eintrag ist a[mid] if almid] < value:
"‘:Z - et bei keys[mid] = P: liefert 6 zurck lo = mid + 1
0 9 4 A CEHLMPRSX . .
597 NP RS X elif value < al[mid]:
565 MoP . . _
766 P hi = mid 1
\ Schleife beendet bei 1o > hi: liefert 7 zurtick e 1 se:

return mid

Quelle: Abbildung 1.9, Algorithmen, Wayne & Sedgewick return None

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 19 / 45

B6. Symboltabellen Einfache Implementationen

Die Rank Funktion

» Gibt Anzahl Elemente zuriick die kleiner als Schliissel sind
» Entspricht genau Index in Array

keys[] def _rank(a, value):
erfolgreiche SuchenachP 0 1 2 3 4 5 6 7 8 9 lo = 0
Lo hi mid schwarze Eintrge P -
094 ACEHLMPRSX chwarae Einirogs hi = len(a) 1
59 7 M P RS X— - . _ ..
s 6 s Wb while lo <= hi:
6 6 6 X > roter Eintrag ist a[mid] mid = (lo + hi) // 2
erfolglosi Suc::‘-_* "aCf'dQ Schleife beendet bei keysmid] = P: liefert 6 zurick if almid] < value:
o hi mi
09 4 ACEHLMPRSX lo = mid + 1
:2 : n :R s X elif wvalue < almid]:
7.6 6 P hi = mid - 1
Schleife beendet bei 10 > hi: liefert 7 zurack :
™~ else:

return mid

Quelle: Abbildung 3.6, Algorithmen return 1lo
Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20 / 45

B6. Symboltabellen

Einfache Implementation 2

Datenstruktur Geordnetes Array von Schliissel /Werte-Paaren
Hilfsfunktion rank Anzahl Elemente < k (index in Array)
Operationen:

get: Nutze rank um direkt auf richtiges Element
zuzugreifen.

» Teste ob wirklich richtiges Element an dieser
Stelle ist

put: Nutze rank um Stelle zu finden wo eingefiigt/ersetzt
werden muss.

Details: Jupyter Notebook: Symboltable.ipynb

Einfache Implementationen

B6. Symboltabellen

Einfache Implementationen

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

21 /45

B6. Symboltabellen

Geordnete Symboltabellen: Komplexitat

Einfache Implementationen

Komplexitat
Worst-case Average-case
Implementation suchen einfiigen suchen einfiigen
Verkettete Liste N N N/2 N
Binare suche logo(N) N logo,(N) N/2
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22 / 45
B6. Symboltabellen Einfache Implementationen
Implementation
ZJupyter untitled aoses
File Edit View Insert Cell Kemel Help # | Python [Root] O
+ x @B 4+ ¢ M B C coe * & CelToobar & @ @

Algorithmen und Datenstrukturen

Interaktive Experimente

In [3]: Spylab inlino

Populating L ctiv

mpy and matplotlib

out [[<matplot.

1000000

#0000

0000

400000

Verkettete Liste Bindrsuche
suche O(N) O(log N)
einfiigen / léschen O(N) O(N)
min / max O(N) 0o(1)
floor /ceiling O(N) log(NV)
rank O(N) O(log(N))
select O(N) 0o(1)
iteration (geordnet) N log(N) N
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 23 / 45

200000

0 w0 %0 %0 000

» Ausfiihrliche Diskussion und Implementation
Jupyter-Notebook: Symboltable-ordered.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24

/ 45

B6. Symboltabellen Bindre Suchbdume

B6.4 Binare Suchbaume

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25 / 45

B6. Symboltabellen Bindre Suchbdume

Binare Suchbiaume

Ein Binadrer Suchbaum ist ein Bindrbaum mit symmetrischer
Ordnung

Wurzel
Ein Bindrbaum ist cne ke Refrer

ein Teilbaum

» der leere Baum, oder

B6. Symboltabellen Binire Suchbidume

Implementation

class Node[Key, Valuel:

Auf Key muss Ordnungsrelation
definiert sein

Node (key : Key, value : Value)
key : Key
value : Value

left : Node[Key, Valuel
right : Node[Key, Valuel

» Implementation Symboltabelle: Referenz zu Wurzel Knoten

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27 / 45

» eine Wurzel mit einem linken und QQ eer
indknoten
H der Wurzel
einem rechten Unterbaum L Rorensen
Sym etrIS(.:.h e Ord nu ng A I?]rurnkmnm von A und R Schliissel
Der Schliissel jedes Knotens ist R
von E
= - ; H (RO Wert, der
> grosser als alle Schliissel im linken & \1,‘,‘,;,]&.,'”,
- bunden 1st
Teilbaum 7 y
Schliissel S(,}Illii(’l
» kleiner als alle Schlissel im rechten Heiner als & grefleralse
Tei|baum Quelle: Abb. 3.8 / 3.9, Algorithmen, Wayne
& Sedgewick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 26 / 45
B6. Symboltabellen Binire Suchbdume

Reprasentation in Code (mit Zahler)

> Attribute Count zidhlt die Anzahl Knoten im Unterbaum
» Erlaubt effiziente Implementation von Operation size
» Kein Traversieren vom Baum nétig.

class Node[Key, Valuel:

Auf Key muss Ordnungsrelation
definiert sein

Node (key : Key, value : Value)

key : Key

value : Value

left : Node[Key, Valuel
right : Node[Key, Value]
count : Int

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28 / 45

B6. Symboltabellen Bindre Suchbdume

Suche in Bindrbaum

» Um get zu implementieren, miissen wir effizient suchen
konnen.
Suche nach Schliissel k: Prinzip:
Fall 1: k < Schliissel in Knoten
» Gehe nach links
Fall 2: k > Schlissel in Knoten
» Gehe nach rechts
Fall 3: k = Schliissel in Knoten as
» Gefunden ®-

R wurde gefunden
(e he Suche),

erfolgreiche Suche nach R

graue Knoten

m stimmen nicht mit

dem Suchschlitssel
iiberein

T ist grofer als S,
deshalb rechts suchen

R

M. Liithi, G. Réger (Universitit Basel)

T ist kleiner als X,
deshalb links suchen

Referenz ist null, desha
ist T nicht im Baum
Lorfololose Suche)

Algorithmen und Datenstrukturen 29 / 45

B6. Symboltabellen

Suche in Bindrbaum

» Die Suche, ausgehend von Knoten root kann einfach rekursiv
implementiert werden.

» Suche wird einfach in "richtigem” Teilbaum fortgesetzt.

def get(key, root):
if root == None:
return None
elif key < root.key:
return get(key, root.left)
elif key > root.key:
return get(key, root.right)
elif key == root.key:
return root.value

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bindre Suchbiume

30 / 45

B6. Symboltabellen Binire Suchbidume

Einfligen in Binarbaum

P put lasst sich fast so einfach wie get implementieren.

L einfiigen
.. Suche nach L "
Suche nach Schliissel. ot e
Zwei Fille:
» Schliissel gefunden — Wert neu
setzen b S O]
10
» Schlussel nicht in Baum — Neuen s
Knoten hinzufiigen. “_—
\ 3
Setzt die Referenzen ¢
neu und erhoht die
Ziihler auf dem
Weg nach oben

Quelle: Abb. 3.12, Algorithmen, Wayne &
Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 31 /45

B6. Symboltabellen

Einfligen in Binarbaum

» Die Operation put ausgehen von Knoten root kann einfach
rekursiv implementiert werden.

» Auf dem "Riickweg” wird der Zahler fiir die Anzahl Knoten im
Unterbaum aktualisiert.

» Beachte: Teilbaum wird in jeder Rekursion neu gesetzt.

def put(key, value, root):
if (root == None):
return Node (key, value, count = 1)
elif key < root.key:
root.left = put(key, value, root.left)
elif key > root.key:
root.right = put(key, value, root.right)

elif key == root.key:
root.value = value
root.count = 1 + size(root.left) + size(root.right)

return root

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bindre Suchbiume

32 / 45

B6. Symboltabellen Bindre Suchbdume

Auspragung des Binarbaums

> Selbe Menge von Schliisseln fiihrt zu verschiedene Bdumen
> hangt von Einfiigereihenfolge ab.

B6. Symboltabellen

Geordnete Symboltabellen: API

Schliissel Werte

min()—=09:00:00 Chicago
09:00:03 Phoenix

’/gg/w— Houston
get(09:00:13) 9:00:59 Chicago

09:01:10 Houston
floor(09:05:00)—-09:03:13 Chicago
09:10:11 Seattle
select(7)—=09:10:25 Seattle
09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—|09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—09:35:21 Chicago
09:36:14 Seattle

max()—=09:37:44 Phoenix

size(09:15:00, 09:25:00) ist 5
rank(09:10:25) ist 7

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bindre Suchbiume

34 / 45

bester Fall typischer Fall
m schlimmster
(Q (S) Fall
Quelle: Abb. 3.14, Algorithmen, Wayne & Sedgewick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 33 /45
B6. Symboltabellen Binire Suchbidume

Quiz: Minimum und Maximum

Minimum Kleinster Schliissel in Symboltabelle

Maximum Grosster Schliissel in Symboltabelle

» Wie finden wir Minimum und Maximum?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 35 /45

B6. Symboltabellen

Quiz: Floor und Ceiling

Floor Grosster Schliissel < gegebener Schliissel
Ceiling Kleinster Schliissel > gegebener Schliissel

e -

o ol

o @

» Wie finden wir Floor und Ceiling?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bindre Suchbiume

36 / 45

B6. Symboltabellen
Ordnungsbasierte Operationen

Zjupyter untitled woses
File Edit View Inset Cell Kemel Help # | Python [Root] O

B+ x & B ¢ N EC Coe < B Celfoobar & & @

Algorithmen und Datenstrukturen

Interaktive Experimente

rom numpy and matplotlin

1000000

#0000

00000

400000

200000

0 W0 w0 w0 00

» Ordnungsbasierten Operationen sind einfach zu
implementieren.

» Ausfiihrliche Diskussion und Implementation
Jupyter-Notebook: BinarySearchTrees.ipynb

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 37/

Bindre Suchbiume

45

B6. Symboltabellen

Loschen von Knoten: Einfache Methode

Bindre Suchbiume

Einfachste Methode zum Ldschen: Tombstone
» Finde Knoten

» Markiere diesen als geloscht (z.B. indem Wert auf null
gesetzt wird).

» Schliissel bleibt im Baum

Delete (R)

Problem: Speicherverschwendung bei vielen geldschten
Elementen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 38 / 45

B6. Symboltabellen

Loschen von minimalem Key

» Nach Links bis linker Knoten null ist
» Diesen Knoten durch rechten Knoten ersetzten
» Knotenzihler count aktualisieren.

def deleteMin(root):

if root.left == None:
return root.right
else:
root.left = deleteMin(x.left);
root.count = 1 + size(root.left) + size(root.right);

return root

links gehen, die rechte Referenz Referenzen und Knotenzihlung
bis die linke dieses Knotens nach den rekursiven
null-Referenz zuriickliefern Aufrufen aktualisieren

erreicht wird

AN W A
| "

verfiigbar fiir die
Speicherbereinigung

Quelle: Abb. 3.19, Algorithmen, Wayne & Sedgewick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 39

Bindre Suchbdume

/45

B6. Symboltabellen

Loschen nach Hibbard

Bindre Suchbiume

» Knoten t mit zu ldschendem Schliissel suchen.
Fall 1: Keine Kinder

Knotenzahler aktualisieren

7
\\ 5 (S
1 _©®
®Q A
T Auf leeren Baum (null)
setzen

Zu léschender Knoten

» Parent von t auf leeren Baum (null) setzen.

» Knotenzihler count aktualisieren.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 40 / 45

B6. Symboltabellen Bindre Suchbdume

Loschen nach Hibbard

» Knoten t mit zu ldschendem Schliissel suchen.
Fall 2: 1 Kind

Knotenzahler aktualisieren 7

CSD/Q
Zu l6schender Knoten /

Durch Kind ersetzen

» Parent von t neu setzen

» Knotenzihler count aktualisieren.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 41 / 45

B6. Symboltabellen Bindre Suchbdume

Loschen nach Hibbard

» Knoten t mit zu ldschendem Schliissel suchen.
Fall 3: 2 Kinder

» Kleinster Knoten x im rechten Unterbaum von t suchen
» Kleinster Knoten im Unterbaum |&schen (deleteMin)
> x anstelle von t setzten

» Knotenzihler count aktualisieren.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 42 / 45

B6. Symboltabellen Binire Suchbidume

Loschen nach Hibbard: Probleme

» Warum wird durch Nachfolger und nicht Vorganger ersetzt?
» Entscheidung willkiirlich und unsymmetrisch.

» Konsequenz: Baume nicht zuféllig = Performanceeinbussen

> Praxis: Manchmal Vorgéanger und manchmal Nachfolger
verwenden.

Offenes Problem!
Elegante und effiziente Lésung fiir Léschen in Bindrbaum.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 43 / 45

B6. Symboltabellen Binire Suchbdume

Komplexitat

Worst-case Average-case
Implementation suchen einfiigen 16schen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binare suche logo,(N) N N log, (N) N/2 N
Binsrer Suchbaum N N N log, (V) log,(N) VN

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 44 / 45

B6. Symboltabellen

Implementation

ZJupyter Untited wosme

File Edit View Inset Cell Kemel Help # | Python [Root] O

B+ % A B 4 v M EC coe | @ celoobar @& @ @

Algorithmen und Datenstrukturen

Interaktive Experimente
In [3]: pylab inline

Populaling Lhe inleraclive namespace [rom numpy end malplollib

Tn (715 plot(linspace (0, 1000), (linspace (0,1000) *+2))
i [<malplollib.lines.Line2D al 0x29d8be022e3>]

1000000

#0000

0000

400000

200000

0 0 &0 0 000

Jupyter-Notebook: BinarySearchTrees.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bindre Suchbiume

45 / 45

	Einführung
	

	Symboltabellen
	

	Einfache Implementationen
	

	Binäre Suchbäume
	

