
Algorithmen und Datenstrukturen
B6. Symboltabellen

Marcel Lüthi and Gabriele Röger

Universität Basel

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 45

Algorithmen und Datenstrukturen
— B6. Symboltabellen

B6.1 Einführung

B6.2 Symboltabellen

B6.3 Einfache Implementationen

B6.4 Binäre Suchbäume

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 45

B6. Symboltabellen Einführung

B6.1 Einführung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 45

B6. Symboltabellen Einführung

Übersicht

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Weiterführende
Themen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 45

B6. Symboltabellen Einführung

Übersicht über nächsten Vorlesungen

Thema: Symboltabellen

I Einführung und einfache Implementationen (Diese Woche)

I Binäre Suchbäume (Diese Woche)

I 2-3-Bäume und Rot-Schwarz Bäume (Nächste Woche)

I Hashtabellen (Nächste Woche)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 45

B6. Symboltabellen Symboltabellen

B6.2 Symboltabellen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 45

B6. Symboltabellen Symboltabellen

Symboltabellen

Abstraktion für Schlüssel/Werte Paar

Grundlegende Operationen

I Speichere Schlüssel mit dazugehörendem Wert.

I Suche zu Schlüssel gehörenden Wert.

I Schlüssel und Wert löschen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 45

B6. Symboltabellen Symboltabellen

Beispiel: DNS

I Einfügen von Domainname (Schlüssel) mit gegebener IP
Adresse (Wert)

I Gegeben Domainname, finde IP Adresse

Domainname IP Adresse

informatik.cs.unibas.ch 131.152.227.35
www.unibas.ch 131.152.228.33
www.cs.princeton.edu 128.112.136.11
www.fsf.org 208.118.235.174

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 45

B6. Symboltabellen Symboltabellen

Andere Beispiele

Anwendung Zweck der Suche Schlüssel Wert
Wörterbuch Definition finden Wort Definition
Websuche Finde Webseite Suchbegriff Liste von Webseiten
Compiler Eigenschaften von Variablen Variablenname Typ / Wert
Dateisystem Finde Datei auf Disk Dateiname Ort auf Disk
Log Finde Events Timestamp Logeintrag

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 45

B6. Symboltabellen Symboltabellen

Annahmen

I Jeder Schlüssel ist eindeutig.
I Werte mit gleichem Schlüssel werden ersetzt.

I Schlüssel sind vergleichbar.

I Schlüsselgleichheit (Equality) ist definiert.

I Schlüssel sollen nicht mutierbar sein.

I Entspricht verallgemeinerung von Array (mit Schlüssel 6=
Index).

I Wird als Assoziatives Array bezeichnet.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 45

B6. Symboltabellen Symboltabellen

Umsetzung in Programmiersprachen

Symboltabelle werden auch als Map, Assoziatives Array oder
Dictionary bezeichnet.

In Java: Teil der Standardbibliothek

I AbstractMap mit Subklassen HashMap und TreeMap

Map<String, Integer> st = new TreeMap<>();

st.put("aKey", 42);;

st.put("anotherKey", 17)

Integer value = st.get("aKey");

In Python: Teil der Sprache:

st = {"aKey" : 42, "anotherKey" : 17}

value = st["aKey"]

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 45

B6. Symboltabellen Symboltabellen

Symboltabellen: API

class ST[Key , Value]:

def put(key : Key , value : Value) -> None

def get(key : Key) -> Value

def contains(key : Key) -> Boolean

def delete(key : Key) -> None

def isEmpty () -> Boolean

def size() -> Int

def keys() : Iterator[Key]

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 45

B6. Symboltabellen Symboltabellen

Geordnete Symboltabellen: API

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 45

B6. Symboltabellen Symboltabellen

Geordnete Symboltabellen: API

I Wenn die Schlüssel geordnet werden können, lässen sich viele
weitere Operationen definieren:

class ST[Key , Value]:

...

def min() -> Key

def max() -> Key

def floor(key : Key) -> Key

def ceiling(key : Key) -> Key

def rank(key : Key) : Int

def select(k : Int) -> None

def deleteMin () -> None

def deleteMax () -> None

def size(lo : Key , hi : Key) -> Int

def keys() : Iterator[Key]

def keys(lo : Key , hi : Key) -> Iterator[Key]

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 45

B6. Symboltabellen Symboltabellen

Warnung: Gleichheit von Objekten

I Zwei Arten von Gleichheit in OO Sprachen:

Referenzgleichheit (==) Referenzen sind gleich

(gleiches Objekt)

Objektgleichheit (equals) Inhalt ist gleich

Achtung!

Implementation von benutzerdefinierten Klassen in Java und
Python vergleicht per Default nur Objekt-Id und nicht Inhalt.

I Methoden equals (Java) und eq (Python) müssen
implementiert werden.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 45

B6. Symboltabellen Einfache Implementationen

B6.3 Einfache Implementationen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 45

B6. Symboltabellen Einfache Implementationen

Standard Testbeispiel

Bilde eine Symboltabelle bei der der i−te Input mit dem Wert i
assoziiert ist

Input:

Schlüssel S E A R C H E X A M P L E
Werte 0 1 2 3 4 5 6 7 8 9 10 11 12

Symboltabelle:

Schlüssel A C E H L M P R S X
Werte 8 4 12 5 11 9 10 3 0 7

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 45

B6. Symboltabellen Einfache Implementationen

Einfache Implementation 1

Datenstruktur Verkettete Liste von Schlüssel/Werte-Paaren
Suchen Elemente durchlaufen bis gefunden oder Listenende

Einfügen Element in Liste? Wert ändern. Ansonsten: Am
Anfang einfügen.

Quelle: Abbildung 3.3, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 45

B6. Symboltabellen Einfache Implementationen

Intermezzo: Binary search

I Klassischer Algorithmus zum Suchen in geordnetem Array
I Vergleiche Element mit mittlerem Element des Arrays
I Wiederhole in Teilarray, bis Element gefunden oder Teilarray

leer.

Quelle: Abbildung 1.9, Algorithmen, Wayne & Sedgewick

def binarysearch(a, value):

lo, hi = 0, len(a) - 1

while lo <= hi:

mid = (lo + hi) // 2

if a[mid] < value:

lo = mid + 1

elif value < a[mid]:

hi = mid - 1

else:

return mid

return None

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 45

B6. Symboltabellen Einfache Implementationen

Die Rank Funktion

I Gibt Anzahl Elemente zurück die kleiner als Schlüssel sind
I Entspricht genau Index in Array

Quelle: Abbildung 3.6, Algorithmen
Wayne & Sedgewick

def _rank(a, value):

lo = 0

hi = len(a) - 1

while lo <= hi:

mid = (lo + hi) // 2

if a[mid] < value:

lo = mid + 1

elif value < a[mid]:

hi = mid - 1

else:

return mid

return lo

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 45

B6. Symboltabellen Einfache Implementationen

Einfache Implementation 2

Datenstruktur Geordnetes Array von Schlüssel/Werte-Paaren

Hilfsfunktion rank Anzahl Elemente < k (index in Array)

Operationen:

get: Nutze rank um direkt auf richtiges Element
zuzugreifen.

I Teste ob wirklich richtiges Element an dieser
Stelle ist

put: Nutze rank um Stelle zu finden wo eingefügt/ersetzt
werden muss.

Details: Jupyter Notebook: Symboltable.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 45

B6. Symboltabellen Einfache Implementationen

Komplexität

Worst-case Average-case
Implementation suchen einfügen suchen einfügen

Verkettete Liste N N N/2 N
Binäre suche log2(N) N log2(N) N/2

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 45

B6. Symboltabellen Einfache Implementationen

Geordnete Symboltabellen: Komplexität

Verkettete Liste Binärsuche

suche O(N) O(logN)
einfügen / löschen O(N) O(N)

min / max O(N) O(1)
floor /ceiling O(N) log(N)

rank O(N) O(log(N))
select O(N) O(1)

iteration (geordnet) N log(N) N

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 45

B6. Symboltabellen Einfache Implementationen

Implementation

I Ausführliche Diskussion und Implementation
Jupyter-Notebook: Symboltable-ordered.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24 / 45

B6. Symboltabellen Binäre Suchbäume

B6.4 Binäre Suchbäume

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 25 / 45

B6. Symboltabellen Binäre Suchbäume

Binäre Suchbäume

Ein Binärer Suchbaum ist ein Binärbaum mit symmetrischer
Ordnung

Ein Binärbaum ist

I der leere Baum, oder

I eine Wurzel mit einem linken und
einem rechten Unterbaum

Symetrische Ordnung
Der Schlüssel jedes Knotens ist

I grösser als alle Schlüssel im linken
Teilbaum

I kleiner als alle Schlüssel im rechten
Teilbaum Quelle: Abb. 3.8 / 3.9, Algorithmen, Wayne

& Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26 / 45

B6. Symboltabellen Binäre Suchbäume

Implementation

class Node[Key , Value]:

Auf Key muss Ordnungsrelation

definiert sein

Node(key : Key , value : Value)

key : Key

value : Value

left : Node[Key , Value]

right : Node[Key , Value]

I Implementation Symboltabelle: Referenz zu Wurzel Knoten

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27 / 45

B6. Symboltabellen Binäre Suchbäume

Repräsentation in Code (mit Zähler)

I Attribute Count zählt die Anzahl Knoten im Unterbaum
I Erlaubt effiziente Implementation von Operation size

I Kein Traversieren vom Baum nötig.

class Node[Key , Value]:

Auf Key muss Ordnungsrelation

definiert sein

Node(key : Key , value : Value)

key : Key

value : Value

left : Node[Key , Value]

right : Node[Key , Value]

count : Int

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28 / 45

B6. Symboltabellen Binäre Suchbäume

Suche in Binärbaum

I Um get zu implementieren, müssen wir effizient suchen
können.

Suche nach Schlüssel k : Prinzip:

Fall 1: k < Schlüssel in Knoten

I Gehe nach links

Fall 2: k > Schlüssel in Knoten

I Gehe nach rechts

Fall 3: k = Schlüssel in Knoten

I Gefunden

Quelle: Abb. 3.11, Algorithmen, Wayne &
Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 29 / 45

B6. Symboltabellen Binäre Suchbäume

Suche in Binärbaum

I Die Suche, ausgehend von Knoten root kann einfach rekursiv
implementiert werden.
I Suche wird einfach in ”richtigem” Teilbaum fortgesetzt.

def get(key , root):

if root == None:

return None

elif key < root.key:

return get(key , root.left)

elif key > root.key:

return get(key , root.right)

elif key == root.key:

return root.value

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 30 / 45

B6. Symboltabellen Binäre Suchbäume

Einfügen in Binärbaum

I put lässt sich fast so einfach wie get implementieren.

Suche nach Schlüssel.
Zwei Fälle:

I Schlüssel gefunden → Wert neu
setzen

I Schlüssel nicht in Baum → Neuen
Knoten hinzufügen.

Quelle: Abb. 3.12, Algorithmen, Wayne &
Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 31 / 45

B6. Symboltabellen Binäre Suchbäume

Einfügen in Binärbaum

I Die Operation put ausgehen von Knoten root kann einfach
rekursiv implementiert werden.
I Auf dem ”Rückweg” wird der Zähler für die Anzahl Knoten im

Unterbaum aktualisiert.

I Beachte: Teilbaum wird in jeder Rekursion neu gesetzt.

def put(key , value , root):

if (root == None):

return Node(key , value , count = 1)

elif key < root.key:

root.left = put(key , value , root.left)

elif key > root.key:

root.right = put(key , value , root.right)

elif key == root.key:

root.value = value

root.count = 1 + size(root.left) + size(root.right)

return root

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 32 / 45

B6. Symboltabellen Binäre Suchbäume

Ausprägung des Binärbaums

I Selbe Menge von Schlüsseln führt zu verschiedene Bäumen
I hängt von Einfügereihenfolge ab.

Quelle: Abb. 3.14, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 33 / 45

B6. Symboltabellen Binäre Suchbäume

Geordnete Symboltabellen: API

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 34 / 45

B6. Symboltabellen Binäre Suchbäume

Quiz: Minimum und Maximum

Minimum Kleinster Schlüssel in Symboltabelle

Maximum Grösster Schlüssel in Symboltabelle

I Wie finden wir Minimum und Maximum?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 35 / 45

B6. Symboltabellen Binäre Suchbäume

Quiz: Floor und Ceiling

Floor Grösster Schlüssel ≤ gegebener Schlüssel

Ceiling Kleinster Schlüssel ≥ gegebener Schlüssel

I Wie finden wir Floor und Ceiling?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 36 / 45

B6. Symboltabellen Binäre Suchbäume

Ordnungsbasierte Operationen

I Ordnungsbasierten Operationen sind einfach zu
implementieren.

I Ausführliche Diskussion und Implementation
Jupyter-Notebook: BinarySearchTrees.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 37 / 45

B6. Symboltabellen Binäre Suchbäume

Löschen von Knoten: Einfache Methode

Einfachste Methode zum Löschen: Tombstone

I Finde Knoten
I Markiere diesen als gelöscht (z.B. indem Wert auf null

gesetzt wird).
I Schlüssel bleibt im Baum

Problem: Speicherverschwendung bei vielen gelöschten
Elementen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 38 / 45

B6. Symboltabellen Binäre Suchbäume

Löschen von minimalem Key

I Nach Links bis linker Knoten null ist
I Diesen Knoten durch rechten Knoten ersetzten
I Knotenzähler count aktualisieren.

def deleteMin(root):

if root.left == None:

return root.right

else:

root.left = deleteMin(x.left);

root.count = 1 + size(root.left) + size(root.right);

return root

Quelle: Abb. 3.19, Algorithmen, Wayne & Sedgewick
M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 39 / 45

B6. Symboltabellen Binäre Suchbäume

Löschen nach Hibbard

I Knoten t mit zu löschendem Schlüssel suchen.

Fall 1: Keine Kinder

I Parent von t auf leeren Baum (null) setzen.

I Knotenzähler count aktualisieren.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 40 / 45

B6. Symboltabellen Binäre Suchbäume

Löschen nach Hibbard

I Knoten t mit zu löschendem Schlüssel suchen.

Fall 2: 1 Kind

I Parent von t neu setzen

I Knotenzähler count aktualisieren.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 41 / 45

B6. Symboltabellen Binäre Suchbäume

Löschen nach Hibbard

I Knoten t mit zu löschendem Schlüssel suchen.

Fall 3: 2 Kinder

I Kleinster Knoten x im rechten Unterbaum von t suchen

I Kleinster Knoten im Unterbaum löschen (deleteMin)

I x anstelle von t setzten

I Knotenzähler count aktualisieren.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 42 / 45

B6. Symboltabellen Binäre Suchbäume

Löschen nach Hibbard: Probleme

I Warum wird durch Nachfolger und nicht Vorgänger ersetzt?

I Entscheidung willkürlich und unsymmetrisch.
I Konsequenz: Bäume nicht zufällig ⇒ Performanceeinbussen

I Praxis: Manchmal Vorgänger und manchmal Nachfolger
verwenden.

Offenes Problem!
Elegante und effiziente Lösung für Löschen in Binärbaum.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 43 / 45

B6. Symboltabellen Binäre Suchbäume

Komplexität

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

Binärer Suchbaum N N N log2(N) log2(N)
√
N

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 44 / 45

B6. Symboltabellen Binäre Suchbäume

Implementation

Jupyter-Notebook: BinarySearchTrees.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 45 / 45

	Einführung
	

	Symboltabellen
	

	Einfache Implementationen
	

	Binäre Suchbäume
	

