Algorithmen und Datenstrukturen
B5. Heaps und Heapsort

Marcel Lithi and Gabriele Roger

Universitat Basel

Einfiihrung

Einfithrung

en mit Heaps
oe S

Ausblick auf Vorlesung

m Die Datenstruktur Heap
m Heaps zur Implementation von Priorityqueues

m Heapsort

Heaps
[JeleYolole}

Heaps

Einfiihrung Heaps en mit Heaps
O@0000 S

Bijektion - Array / Vollstandiger Bindrbaum

m Jedes Array kann als vollstandiger Bindrbaum interpretiert
werden:
m Linker Teilbaum: Index Wurzel * 2
m Rechter Teilbaum: Index Wurzel ¥ 2 41

Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne

Einfiihrung Heaps zen mit Heaps
[e]e] lele]e] O

Heap

Definition: Heap

Ein bindrer Baum / Array ist Heap geordnet, wenn der Schliissel in
jedem Knoten grosser gleich dem Schliissel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick

Heaps
[e]ele] Yole}

Heap Ordnung

Der grésste Schliissel in einem Heap-geordneten Bindrbaum
befindet sich an der Wurzel.

Beweis.

Induktion liber die Baumgrosse

Einfiihrung Heaps

0000e0

Binarer Heap

Definition: Binarer Heap

Ein binarer Heap ist eine Sammlung von Schliisseln, die in einem
vollstandigen Heap-geordneten Bindrbaum angeordnet sind und in
einem Array ebenenweise reprisentiert werden (das erste Feld des
Arrays wird nicht verwendet).

Einfiihrung Heaps \ en mit Heaps

00000e

Binarer Heap

i 012 3 45 6 7 8 91011
a[i] - T S R P NOATETIHG
T
\
\
\\\;1:\::\};\A
E I H™G

Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick

Warteschlangen mit Heaps

0000000000

Warteschlangen mit Heaps

Warteschlangen mit Heaps

Einfiihrung
(e]e] O@00000000

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen
def insert(k : Item) -> None

Groesstes Element zurueckgeben
def max() -> Item

Groesstes Element entfernen und zurueckgeben
def delMax() -> Item

Ist die Queue leer?
def isEmpty () -> bool

Anzahl Elemente in der Priority Queue
def size() -> int

Einfiihrung

Warteschlangen mit Heaps

00@0000000

Beobachtung

Array implementation von Max-heap hat grosstes Element immer
an Stelle 1.

m Implementation von max ist trivial

Problem: Wir miissen wenn wir beim insert und delMax die
Heapbedingung erfiillen konnen.

Heaps Warteschlangen mit Heaps

,,,,, O 000e000000

Einfiihrung

Beobachtung (2)

m Array implementation erlaubt uns in konstanter Zeit zu jedem

Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...

... ohne dabei explizite Verweise verwalten zu miissen .
m Der Baum hat die Hohe |log,(N)]

Durch geschicktes Vertauschen der Eltern/Kinder in O(log,(/N))
Operationen nach Entfernen oder Einfiigen eines Elements die
Heapbedingung wiederherstellen.

Einfiihrung

Element einfiigen

m Blatt wird an letzter Stelle
im Array eingefiigt
m entspricht Blatt ganz
rechts
m Heap Bedingung wird durch
Ausfiihren von swim
wiederhergestellt

Warteschlangen mit Heaps
0000800000

Einfiigen eines
neuen Elements

- Hinzufiigen des Schliissels
zum Heap verletzt die
Heap-Ordnung

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne

Einfiihrung Warteschlangen mit Heaps

[e]e]e]e]e] lelele]e)

Die Operation swim

m Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfiillt ist.

@‘5@
9

def swim(a, k): 2(s)
while k > 1 and al[k/2] < alk]:) @ B

verletzt die Heap-Ordnung
(Schliissel grofer
als Elternknoten)

m Braucht maximal log,(N) + 1
Vergleiche.

alk/2], alk] = alk]l, alk/2]
k = k/2

Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne

Warteschlangen mit Heaps
0000008000

Einfiihrung

Grosstes Element entfernen

m Wurzel (grosstes Element)
wird entfernt

Entfernen des
cuaften Elements ~— zu entfernender

‘/xh el
G| 2 'i

m Blatt ganz rechts wird an

Wourzel gesetzt ® © © @ik,
m Heap Bedingung wird durch " Heap- Orming
ausfiihren von sink S n
. (N © ®

G)
wiederhergestellt & D @ 1ot
vom Heap

sinkt nach
unten

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne

Einfiihrung Warteschlangen mit Heaps

0000000e00

Die Operation sink

u KnOten an POSItIon k in Array a verletzt die Heap-Ordnung
Sinkt naCh unten bIS Heap (kleiner als ein Kindknoten)
Bedingung wieder erfiillt ist. 5O
m Element wird mit grésserem Kind 0, 5
vertauscht. ® (D
m Braucht maximal 2log,(N) @)
Vergleiche. 2 ®)
def sink(a, k): o 3 e o
Elemente 4n al[1]..a[N] 10 @
while 2 * k <= N: G o
j =2 %k
if j < N and al[jl < al[j+1]: Quelle: Abbiludung 2.29: Algorithmen,
j += 1 Sedgewick & Wayne
if not alk]l < aljl:
break

aljl, alk] = alkl, aljl
k=3

Warteschlangen mit Heaps
0000000000

Implementation

Zjupyter untitied ausa

Fle Edt View Inset Cel Kemel Help

| Python [Roof] O
B+ x @A B 4 ¢ N EC e

Y @ Celloobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline
Populating Lhe inleraclive namespace Lrom aumpy and malplollib

Tn 1713 plot(linspace(0, 1000),

out [

(Ling)

ce (0,1000) **2))
. [<matplotlib.lines.Tine2d at 0x29d8ba027ef>)

1000000

800000

00000

00000

200000

Juypter Notebooks: Heap.ipynb

Einfiihrung eaps Warteschlangen mit Heaps

000000000 e

Komplexitat

In einer Vorrangwarteschlange mit N Elementen bendtigen die
Heap-Algorithmen zum Einfiigen eines neuen Elements nicht mehr
als 1 + log,(N) Vergleiche und zum Entfernen des gréssten
Elements nicht mehr als 2 log,(N) Vergleiche.

Heapsort
€000000

Heapsort

Einfiihrung en mit Heaps

Ein Sortieralgorithmus

m Gegeben, ein unsortiertes Array der lange N .
m Fiige alle Elemente der Reihe nach in einen Heap ein.

m Entferne NV mal das grosste Element und schreibe es zuriick
ins Array.

Komplexitat

Heapsort
0®00000

Die Prozedur hat garantierte Laufzeitkomplexitat von
O(N logy(N)).

Einfiihrung A mit Heaps

Heapsort

Heapsort

m ldee: Geschicktes verwenden von swim und sink lasst uns
heapsort in-place verwenden.
m Prozedur verlauft in zwei Phasen:

@ Heap Konstruktion (rechts nach Links)
@ Absteigendes Sortieren durch sukkzesives Tauschen von
grosstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), O, -1):
sink(a, k)

while N > 1:
a[1], a[N] = a[N], al1]
N -= 1
sink(a, 1, N)

[e]e] le]elele)

Heapsort

Quelle:

Heap-Konstruktion

Ausgangsbasis (beliebige Ordnung)

sink(s, 11)

&%

sink(4, 11)

@
& ®

sink(3, 11)

sink(z, 11)
()

(p§ O}

®©@ e ®

sink(1, 11)

Ergebmis (Heap-geordnet)

absteigend Sortieren

exchct, 6
S 8)
O ©
® ® o

exchc1,)

S @
®/%
® ®

of

exch(l, 11)
sink(1; 10

exch(1, 10)
sink(l, 9)

exch(l, 4)
sink(L, 31./.\.

L

exch(1,

M
()
® ®
3
Sink(1, z§®/®
E

' h. 2
St B ® aad: B ®
Q O e

@ © ©®

R

exch(1, 7) 1
sink(l) 6 © A
O: E JE
0) © 4 ‘L Moo e

s 95 107 Ny

Ergebnis (sortiert)

exch(1, 9)
sink(1] 8)

Abbildung 2.31, Algorithmen, Wayne & Sedgewick

Heapsort
000000

Implementation

Zjupyter untitied ausa

Fle Edt View Inset Cel Kemel Help

| Python [Roof] O
B+ x @A B 4 ¢ N EC e

Y @ Celloobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline
Populating Lhe inleraclive namespace Lrom aumpy and malplollib

Tn 1713 plot(linspace(0, 1000),

out [

(Ling)

ce (0,1000) **2))
. [<matplotlib.lines.Tine2d at 0x29d8ba027ef>)

1000000

800000

00000

00000

200000

Jupyter Notebooks: Heaps.ipynb

Einfiihrung Heaps zen mit Heaps Heapsort

[e]e]ele]e] o)

Bemerkungen

m Heapsort ist theoretisch wichtig:
m Optimal hinsichtlich Zeit und Speichernutzung
m Laufzeit O(nlogn).
m Zusitzlicher Speicher (O(1))
m Praktische Bedeutung eher klein
m Nutzt CPU Cache nicht effizient, da entfernte Elemente
ausgetauscht werden.

m Heaps sind aber fiir Priority Queues sehr wichtig!

Einfiihrung N Heapsort

000000e

Zusammenfassung

m Heap-sort Algorithmus von Datenstruktur " getrieben”

m Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen
m Nutzung von Eigenschaften vollsténdiger bindre Baume
m Effiziente Implementation mittels Arrays
m Heap Bedingung um grosstes Element zu erhalten

m Verstdndnis von Heap ist zentral fiir Algorithmus

m Danach ist Algorithmus einfach zu verstehen
m Laufzeitanalyse trivial

	Einführung
	

	Heaps
	

	Warteschlangen mit Heaps
	

	Heapsort
	

