
Algorithmen und Datenstrukturen
B5. Heaps und Heapsort

Marcel Lüthi and Gabriele Röger

Universität Basel

Einführung Heaps Warteschlangen mit Heaps Heapsort

Einführung

Einführung Heaps Warteschlangen mit Heaps Heapsort

Ausblick auf Vorlesung

Die Datenstruktur Heap

Heaps zur Implementation von Priorityqueues

Heapsort

Einführung Heaps Warteschlangen mit Heaps Heapsort

Heaps

Einführung Heaps Warteschlangen mit Heaps Heapsort

Bijektion - Array / Vollständiger Binärbaum

Jedes Array kann als vollständiger Binärbaum interpretiert
werden:

Linker Teilbaum: Index Wurzel * 2
Rechter Teilbaum: Index Wurzel * 2 + 1

Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne

Einführung Heaps Warteschlangen mit Heaps Heapsort

Heap

Definition: Heap

Ein binärer Baum / Array ist Heap geordnet, wenn der Schlüssel in
jedem Knoten grösser gleich dem Schlüssel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick

Einführung Heaps Warteschlangen mit Heaps Heapsort

Heap Ordnung

Theorem

Der grösste Schlüssel in einem Heap-geordneten Binärbaum
befindet sich an der Wurzel.

Beweis.

Induktion über die Baumgrösse

Einführung Heaps Warteschlangen mit Heaps Heapsort

Binärer Heap

Definition: Binärer Heap

Ein binärer Heap ist eine Sammlung von Schlüsseln, die in einem
vollständigen Heap-geordneten Binärbaum angeordnet sind und in
einem Array ebenenweise repräsentiert werden (das erste Feld des
Arrays wird nicht verwendet).

Einführung Heaps Warteschlangen mit Heaps Heapsort

Binärer Heap

Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick

Einführung Heaps Warteschlangen mit Heaps Heapsort

Warteschlangen mit Heaps

Einführung Heaps Warteschlangen mit Heaps Heapsort

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen

def insert(k : Item) -> None

Groesstes Element zurueckgeben

def max() -> Item

Groesstes Element entfernen und zurueckgeben

def delMax () -> Item

Ist die Queue leer?

def isEmpty () -> bool

Anzahl Elemente in der Priority Queue

def size() -> int

Einführung Heaps Warteschlangen mit Heaps Heapsort

Beobachtung

Array implementation von Max-heap hat grösstes Element immer
an Stelle 1 .

Implementation von max ist trivial

Problem: Wir müssen wenn wir beim insert und delMax die
Heapbedingung erfüllen können.

Einführung Heaps Warteschlangen mit Heaps Heapsort

Beobachtung (2)

Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...
... ohne dabei explizite Verweise verwalten zu müssen .

Der Baum hat die Höhe blog2(N)c

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log2(N))
Operationen nach Entfernen oder Einfügen eines Elements die
Heapbedingung wiederherstellen.

Einführung Heaps Warteschlangen mit Heaps Heapsort

Element einfügen

Blatt wird an letzter Stelle
im Array eingefügt

entspricht Blatt ganz
rechts

Heap Bedingung wird durch
Ausführen von swim

wiederhergestellt

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne

Einführung Heaps Warteschlangen mit Heaps Heapsort

Die Operation swim

Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfüllt ist.

Braucht maximal log2(N) + 1
Vergleiche.

def swim(a, k):

while k > 1 and a[k/2] < a[k]:

a[k/2], a[k] = a[k], a[k/2]

k = k/2

Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne

Einführung Heaps Warteschlangen mit Heaps Heapsort

Grösstes Element entfernen

Wurzel (grösstes Element)
wird entfernt

Blatt ganz rechts wird an
Wurzel gesetzt

Heap Bedingung wird durch
ausführen von sink

wiederhergestellt

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne

Einführung Heaps Warteschlangen mit Heaps Heapsort

Die Operation sink

Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfüllt ist.

Element wird mit grösserem Kind
vertauscht.

Braucht maximal 2 log2(N)
Vergleiche.

def sink(a, k):

Elemente in a[1]..a[N]

while 2 * k <= N:

j = 2 * k

if j < N and a[j] < a[j+1]:

j += 1

if not a[k] < a[j]:

break

a[j], a[k] = a[k], a[j]

k = j

Quelle: Abbiludung 2.29: Algorithmen,
Sedgewick & Wayne

Einführung Heaps Warteschlangen mit Heaps Heapsort

Implementation

Juypter Notebooks: Heap.ipynb

Einführung Heaps Warteschlangen mit Heaps Heapsort

Komplexität

Theorem

In einer Vorrangwarteschlange mit N Elementen benötigen die
Heap-Algorithmen zum Einfügen eines neuen Elements nicht mehr
als 1 + log2(N) Vergleiche und zum Entfernen des grössten
Elements nicht mehr als 2 log2(N) Vergleiche.

Einführung Heaps Warteschlangen mit Heaps Heapsort

Heapsort

Einführung Heaps Warteschlangen mit Heaps Heapsort

Ein Sortieralgorithmus

Gegeben, ein unsortiertes Array der länge N .

Füge alle Elemente der Reihe nach in einen Heap ein.

Entferne N mal das grösste Element und schreibe es zurück
ins Array.

Komplexität

Die Prozedur hat garantierte Laufzeitkomplexität von
O(N log2(N)).

Einführung Heaps Warteschlangen mit Heaps Heapsort

Heapsort

Idee: Geschicktes verwenden von swim und sink lässt uns
heapsort in-place verwenden.

Prozedur verläuft in zwei Phasen:
1 Heap Konstruktion (rechts nach Links)
2 Absteigendes Sortieren durch sukkzesives Tauschen von

grösstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), 0, -1):

sink(a, k)

while N > 1:

a[1], a[N] = a[N], a[1]

N -= 1

sink(a, 1, N)

Einführung Heaps Warteschlangen mit Heaps Heapsort

Heapsort

Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick

Einführung Heaps Warteschlangen mit Heaps Heapsort

Implementation

Jupyter Notebooks: Heaps.ipynb

Einführung Heaps Warteschlangen mit Heaps Heapsort

Bemerkungen

Heapsort ist theoretisch wichtig:

Optimal hinsichtlich Zeit und Speichernutzung
Laufzeit O(n log n).
Zusätzlicher Speicher (O(1))

Praktische Bedeutung eher klein

Nutzt CPU Cache nicht effizient, da entfernte Elemente
ausgetauscht werden.

Heaps sind aber für Priority Queues sehr wichtig!

Einführung Heaps Warteschlangen mit Heaps Heapsort

Zusammenfassung

Heap-sort Algorithmus von Datenstruktur ”getrieben”

Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen

Nutzung von Eigenschaften vollständiger binäre Bäume
Effiziente Implementation mittels Arrays
Heap Bedingung um grösstes Element zu erhalten

Verständnis von Heap ist zentral für Algorithmus

Danach ist Algorithmus einfach zu verstehen
Laufzeitanalyse trivial

	Einführung
	

	Heaps
	

	Warteschlangen mit Heaps
	

	Heapsort
	

