
Algorithmen und Datenstrukturen
B5. Heaps und Heapsort

Marcel Lüthi and Gabriele Röger

Universität Basel

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 27

Algorithmen und Datenstrukturen
— B5. Heaps und Heapsort

B5.1 Einführung

B5.2 Heaps

B5.3 Warteschlangen mit Heaps

B5.4 Heapsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 27

B5. Heaps und Heapsort Einführung

B5.1 Einführung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 27

B5. Heaps und Heapsort Einführung

Ausblick auf Vorlesung

I Die Datenstruktur Heap

I Heaps zur Implementation von Priorityqueues

I Heapsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 27

B5. Heaps und Heapsort Heaps

B5.2 Heaps

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 27

B5. Heaps und Heapsort Heaps

Bijektion - Array / Vollständiger Binärbaum

I Jedes Array kann als vollständiger Binärbaum interpretiert
werden:
I Linker Teilbaum: Index Wurzel * 2
I Rechter Teilbaum: Index Wurzel * 2 + 1

Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 27

B5. Heaps und Heapsort Heaps

Heap

Definition: Heap

Ein binärer Baum / Array ist Heap geordnet, wenn der Schlüssel in
jedem Knoten grösser gleich dem Schlüssel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 27

B5. Heaps und Heapsort Heaps

Heap Ordnung

Theorem
Der grösste Schlüssel in einem Heap-geordneten Binärbaum
befindet sich an der Wurzel.

Beweis.
Induktion über die Baumgrösse

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 27

B5. Heaps und Heapsort Heaps

Binärer Heap

Definition: Binärer Heap

Ein binärer Heap ist eine Sammlung von Schlüsseln, die in einem
vollständigen Heap-geordneten Binärbaum angeordnet sind und in
einem Array ebenenweise repräsentiert werden (das erste Feld des
Arrays wird nicht verwendet).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 27

B5. Heaps und Heapsort Heaps

Binärer Heap

Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

B5.3 Warteschlangen mit Heaps

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen

def insert(k : Item) -> None

Groesstes Element zurueckgeben

def max() -> Item

Groesstes Element entfernen und zurueckgeben

def delMax () -> Item

Ist die Queue leer?

def isEmpty () -> bool

Anzahl Elemente in der Priority Queue

def size() -> int

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung

Array implementation von Max-heap hat grösstes Element immer
an Stelle 1 .

I Implementation von max ist trivial

Problem: Wir müssen wenn wir beim insert und delMax die
Heapbedingung erfüllen können.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung (2)

I Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...
... ohne dabei explizite Verweise verwalten zu müssen .

I Der Baum hat die Höhe blog2(N)c

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log2(N))
Operationen nach Entfernen oder Einfügen eines Elements die
Heapbedingung wiederherstellen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Element einfügen

I Blatt wird an letzter Stelle
im Array eingefügt
I entspricht Blatt ganz

rechts

I Heap Bedingung wird durch
Ausführen von swim

wiederhergestellt

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation swim

I Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfüllt ist.

I Braucht maximal log2(N) + 1
Vergleiche.

def swim(a, k):

while k > 1 and a[k/2] < a[k]:

a[k/2], a[k] = a[k], a[k/2]

k = k/2

Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Grösstes Element entfernen

I Wurzel (grösstes Element)
wird entfernt

I Blatt ganz rechts wird an
Wurzel gesetzt

I Heap Bedingung wird durch
ausführen von sink

wiederhergestellt

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation sink

I Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfüllt ist.

I Element wird mit grösserem Kind
vertauscht.

I Braucht maximal 2 log2(N)
Vergleiche.

def sink(a, k):

Elemente in a[1]..a[N]

while 2 * k <= N:

j = 2 * k

if j < N and a[j] < a[j+1]:

j += 1

if not a[k] < a[j]:

break

a[j], a[k] = a[k], a[j]

k = j

Quelle: Abbiludung 2.29: Algorithmen,
Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Implementation

Juypter Notebooks: Heap.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Komplexität

Theorem
In einer Vorrangwarteschlange mit N Elementen benötigen die
Heap-Algorithmen zum Einfügen eines neuen Elements nicht mehr
als 1 + log2(N) Vergleiche und zum Entfernen des grössten
Elements nicht mehr als 2 log2(N) Vergleiche.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 27

B5. Heaps und Heapsort Heapsort

B5.4 Heapsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 27

B5. Heaps und Heapsort Heapsort

Ein Sortieralgorithmus

I Gegeben, ein unsortiertes Array der länge N .

I Füge alle Elemente der Reihe nach in einen Heap ein.

I Entferne N mal das grösste Element und schreibe es zurück
ins Array.

Komplexität

Die Prozedur hat garantierte Laufzeitkomplexität von
O(N log2(N)).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 27

B5. Heaps und Heapsort Heapsort

Heapsort

I Idee: Geschicktes verwenden von swim und sink lässt uns
heapsort in-place verwenden.

I Prozedur verläuft in zwei Phasen:
1 Heap Konstruktion (rechts nach Links)
2 Absteigendes Sortieren durch sukkzesives Tauschen von

grösstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), 0, -1):

sink(a, k)

while N > 1:

a[1], a[N] = a[N], a[1]

N -= 1

sink(a, 1, N)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 27

B5. Heaps und Heapsort Heapsort

Heapsort

Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick
M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24 / 27

B5. Heaps und Heapsort Heapsort

Implementation

Jupyter Notebooks: Heaps.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 25 / 27

B5. Heaps und Heapsort Heapsort

Bemerkungen

I Heapsort ist theoretisch wichtig:
I Optimal hinsichtlich Zeit und Speichernutzung
I Laufzeit O(n log n).
I Zusätzlicher Speicher (O(1))

I Praktische Bedeutung eher klein
I Nutzt CPU Cache nicht effizient, da entfernte Elemente

ausgetauscht werden.

I Heaps sind aber für Priority Queues sehr wichtig!

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26 / 27

B5. Heaps und Heapsort Heapsort

Zusammenfassung

I Heap-sort Algorithmus von Datenstruktur ”getrieben”
I Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen

I Nutzung von Eigenschaften vollständiger binäre Bäume
I Effiziente Implementation mittels Arrays
I Heap Bedingung um grösstes Element zu erhalten

I Verständnis von Heap ist zentral für Algorithmus
I Danach ist Algorithmus einfach zu verstehen
I Laufzeitanalyse trivial

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27 / 27

	Einführung
	

	Heaps
	

	Warteschlangen mit Heaps
	

	Heapsort
	

