Algorithmen und Datenstrukturen
B5. Heaps und Heapsort

Marcel Liithi and Gabriele Roger

Universitat Basel

Algorithmen und Datenstrukturen
— B5. Heaps und Heapsort

B5.1 Einfiihrung
B5.2 Heaps
B5.3 Warteschlangen mit Heaps

B5.4 Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2/27

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 1/27
B5. Heaps und Heapsort Einfiihrung
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 3 /27

B5. Heaps und Heapsort Einfiihrung

Ausblick auf Vorlesung

» Die Datenstruktur Heap
» Heaps zur Implementation von Priorityqueues
» Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4 /27

B5. Heaps und Heapsort

Heaps B5. Heaps und Heapsort Heaps
Bijektion - Array / Vollstandiger Bindrbaum
P Jedes Array kann als vollstandiger Binarbaum interpretiert
werden:
» Linker Teilbaum: Index Wurzel * 2
> Rechter Teilbaum: Index Wurzel * 2 + 1
i 0 1 2 3 4 5 6 7 8 91011
852Heaps alil - TSR P NOAETITHG
T
E I H'G
Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 5 /27 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6 /27
B5. Heaps und Heapsort Heaps B5. Heaps und Heapsort

Heap Heap Ordnung

Definition: Heap

Ein bindrer Baum / Array ist Heap geordnet, wenn der Schliissel in

jedem Knoten grosser gleich dem Schliissel seiner beiden Kindern
(sofern vorhanden) ist.

Theorem

Der grésste Schliissel in einem Heap-geordneten Bindrbaum
befindet sich an der Wurzel.

Beweis.
Induktion iiber die Baumgrdsse O

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

B5. Heaps und Heapsort Heaps

Binarer Heap

Definition: Bindrer Heap

Ein bindrer Heap ist eine Sammlung von Schliisseln, die in einem
vollstandigen Heap-geordneten Bindrbaum angeordnet sind und in
einem Array ebenenweise reprasentiert werden (das erste Feld des
Arrays wird nicht verwendet).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9 /27

B5. Heaps und Heapsort Heaps

Binarer Heap

i 0 1 2 3 4 5 6 7 8 91011
a[i] - T S R P N O A E I H G
T
N
\
\PNO
E I HG

Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 10 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

B5.3 Warteschlangen mit Heaps

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11 / 27

B5. Heaps und Heapsort

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen
def insert(k : Item) -> None

Groesstes Element zurueckgeben
def max() -> Item

Groesstes Element entfernen wund zurueckgeben
def delMax () -> Item

Ist die Queue leer?
def isEmpty () -> bool

Anzahl Elemente in der Priority (ueue
def size() -> int

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 12

Warteschlangen mit Heaps

/ 27

B5. Heaps und Heapsort

Beobachtung

Array implementation von Max-heap hat grosstes Element immer
an Stelle 1 .
Implementation von max ist trivial

Problem: Wir miissen wenn wir beim insert und delMax die
Heapbedingung erfiillen kdnnen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

13/

Warteschlangen mit Heaps

27

B5. Heaps und Heapsort

Beobachtung (2)

» Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...

. ohne dabei explizite Verweise verwalten zu miissen .

» Der Baum hat die Hohe [log,(N)]

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log,(N))
Operationen nach Entfernen oder Einfiigen eines Elements die
Heapbedingung wiederherstellen.

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 14 /

Warteschlangen mit Heaps

/ 27

B5. Heaps und Heapsort

Element einfiigen

> Blatt wird an letzter Stelle
im Array eingefiigt
> entspricht Blatt ganz
rechts

Einfiigen eines
neuen Elements

» Heap Bedingung wird durch
Ausfiihren von swim
wiederhergestellt

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

15 /

Warteschlangen mit Heaps

27

B5. Heaps und Heapsort

Die Operation swim

» Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfiillt ist.

Warteschlangen mit Heaps

» Braucht maximal log,(N) + 1 ® @ @ @ veltzt di Heap- O g
. nl Iiuul\»mml
Vergleiche. G o
def swim(a, k): 2(5) TR)
while k > 1 and alk/2] < alk]:
5
alk/2], alk] = alk], alk/2] 2 © @
k- K/ & ©
Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne
M. Liithi, G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 16 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Grosstes Element entfernen

» Wourzel (grosstes Element)

Entfernen des
e s ~— zu entfernender

wird entfernt e
> Blatt ganz rechts wird an UP) 2 'b
Wourzel gesetzt ® © © @,
» Heap Bedingung wird durch Heap-Ovimng
ausfiihren von sink S n
wiederhergestellt 2 woOw
g ® © © 1"

sinkt nach
unten

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17 / 27

B5. Heaps und Heapsort

Die Operation sink

» Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfiillt ist.

» Element wird mit grosserem Kind
vertauscht.

» Braucht maximal 2log,(N)
Vergleiche.

def sink(a, k):
Elemente in al[1]..al[N]
while 2 * k <= N:
j =2 %k
if j < N and aljl < alj+1]:

Warteschlangen mit Heaps

verletzt die Heap-Ordnung
(kleiner als ein Kindknoten)

& N & ®
10
& D@ ©

Quelle: Abbiludung 2.29: Algorithmen,

j += 1 Sedgewick & Wayne
if not alk] < aljl:

break
aljl, alk]l = alkl, alj]
k=]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

18 / 27

B5. Heaps und Heapsort Warteschlangen mit Heaps

Implementation

ZJupyter Untitied wesmea
File Edt View Inset Cell Kemel Help # | Python [Root] O

B+ & B ¢ N EC Coue Y & Celloobar & @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

Py and matplotlin

1000000

#0000

00000

400000

200000

0 W0 w0 W0 000

Juypter Notebooks: Heap.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 19 / 27

B5. Heaps und Heapsort

Komplexitat

Theorem

Warteschlangen mit Heaps

In einer Vorrangwarteschlange mit N Elementen benétigen die
Heap-Algorithmen zum Einfiigen eines neuen Elements nicht mehr
als 1+ log,(N) Vergleiche und zum Entfernen des gréssten
Elements nicht mehr als 2log,(N) Vergleiche.

M. Liithi, G. Réger (Universitt Basel) Algorithmen und Datenstrukturen

20 / 27

B5. Heaps und Heapsort

B5.4 Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Heapsort

21/

27

B5. Heaps und Heapsort

B5. Heaps und Heapsort

Heapsort

» |dee: Geschicktes verwenden von swim und sink ldsst uns
heapsort in-place verwenden.

» Prozedur verlauft in zwei Phasen:

© Heap Konstruktion (rechts nach Links)
@ Absteigendes Sortieren durch sukkzesives Tauschen von
grosstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), 0, -1):
sink(a, k)

while N > 1:
al1], a[N] = al[N], al1l]
N -=1
sink(a, 1, N)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Heapsort

23 /

27

Heapsort
Ein Sortieralgorithmus
» Gegeben, ein unsortiertes Array der lange N .
> Fiige alle Elemente der Reihe nach in einen Heap ein.
» Entferne N mal das grosste Element und schreibe es zuriick
ins Array.
Komplexitat
Die Prozedur hat garantierte Laufzeitkomplexitat von
O(N logy(N)).
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22 /27
B5. Heaps und Heapsort Heapsort
Heapsort
® z:;ai
(T O} O ®
@ O o
® O ® ®
s, 50 il 8 D 3
(P
¢ w @?@ @
@&9 O E x
sink(4, 11) E;t"hk(ll.‘ 190? e ::;hq: ?) e
C) G k()
0) O O ©®® L
& ® ®® T
sink(3, 11) excc(i‘ gl Q! ?gtq ;)
o sink(1,) o) (1,)®/® .
® @ (o O & ®
™ s
e S B ® S B @
(S O] O O ®®
®©@ 6 ® R
e) ::;::g Lo
0] 0} P ‘L ‘Mmoo fo Tp
v g o e
Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24) 27

B5. Heaps und Heapsort

B5. Heaps und Heapsort

Bemerkungen

P Heapsort ist theoretisch wichtig:

> Optimal hinsichtlich Zeit und Speichernutzung
> Laufzeit O(nlog n).
» Zusitzlicher Speicher (O(1))

» Praktische Bedeutung eher klein

» Nutzt CPU Cache nicht effizient, da entfernte Elemente
ausgetauscht werden.

» Heaps sind aber fiir Priority Queues sehr wichtig!

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Heapsort

26 /

27

Heapsort
Implementation
Zjupyter untitled wscs
File Edit View Insert Cell Kemel Help # | Python [Root] O
B+ 2 AB 44 HEC e © @ | celfoobar | & @ @
Algorithmen und Datenstrukturen
Interaktive Experimente
In 31
ve mamespace from numpy and matplotlic
71 0,1000) **2))
st 82022085]
1000000
00000
600000
00000
200000
0 w0 w0)
Jupyter Notebooks: Heaps.ipynb
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25 /27
B5. Heaps und Heapsort Heapsort

Zusammenfassung

» Heap-sort Algorithmus von Datenstruktur " getrieben”

» Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen
> Nutzung von Eigenschaften vollstandiger bindre Baume
> Effiziente Implementation mittels Arrays
» Heap Bedingung um grésstes Element zu erhalten

» Verstindnis von Heap ist zentral fiir Algorithmus

» Danach ist Algorithmus einfach zu verstehen
> Laufzeitanalyse trivial

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27) 27

	Einführung
	

	Heaps
	

	Warteschlangen mit Heaps
	

	Heapsort
	

