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B5. Heaps und Heapsort Einfiihrung

Ausblick auf Vorlesung

» Die Datenstruktur Heap
» Heaps zur Implementation von Priorityqueues
» Heapsort
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Heaps B5. Heaps und Heapsort Heaps
Bijektion - Array / Vollstandiger Bindrbaum
P Jedes Array kann als vollstandiger Binarbaum interpretiert
werden:
» Linker Teilbaum: Index Wurzel * 2
> Rechter Teilbaum: Index Wurzel * 2 + 1
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Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne
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Heap Heap Ordnung

Definition: Heap

Ein bindrer Baum / Array ist Heap geordnet, wenn der Schliissel in

jedem Knoten grosser gleich dem Schliissel seiner beiden Kindern
(sofern vorhanden) ist.

Theorem

Der grésste Schliissel in einem Heap-geordneten Bindrbaum
befindet sich an der Wurzel.

Beweis.
Induktion iiber die Baumgrdsse O

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick
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Binarer Heap

Definition: Bindrer Heap

Ein bindrer Heap ist eine Sammlung von Schliisseln, die in einem
vollstandigen Heap-geordneten Bindrbaum angeordnet sind und in
einem Array ebenenweise reprasentiert werden (das erste Feld des
Arrays wird nicht verwendet).
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Binarer Heap
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Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick
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B5.3 Warteschlangen mit Heaps
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Priority Queue ADT

class MaxPQ[Item]:

# Element einfuegen
def insert(k : Item) -> None

# Groesstes Element zurueckgeben
def max() -> Item

# Groesstes Element entfernen wund zurueckgeben
def delMax () -> Item

# Ist die Queue leer?
def isEmpty () -> bool

# Anzahl Elemente in der Priority (ueue
def size() -> int
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Beobachtung

Array implementation von Max-heap hat grosstes Element immer
an Stelle 1 .
Implementation von max ist trivial

Problem: Wir miissen wenn wir beim insert und delMax die
Heapbedingung erfiillen kdnnen.
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Beobachtung (2)

» Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...

. ohne dabei explizite Verweise verwalten zu miissen .

» Der Baum hat die Hohe [log,(N)]

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log,(N))
Operationen nach Entfernen oder Einfiigen eines Elements die
Heapbedingung wiederherstellen.
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Element einfiigen

> Blatt wird an letzter Stelle
im Array eingefiigt
> entspricht Blatt ganz
rechts

Einfiigen eines
neuen Elements

» Heap Bedingung wird durch
Ausfiihren von swim
wiederhergestellt

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne
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Die Operation swim

» Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfiillt ist.

Warteschlangen mit Heaps

» Braucht maximal log,(N) + 1 ® @ @ @ veltzt di Heap- O g
. nl Iiuul\»mml
Vergleiche. G o
def swim(a, k): 2(5) TR)
while k > 1 and alk/2] < alk]:
5
alk/2], alk] = alk], alk/2] 2 © @
k- K/ & ©
Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne
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Grosstes Element entfernen

» Wourzel (grosstes Element)

Entfernen des
e s ~— zu entfernender

wird entfernt e
> Blatt ganz rechts wird an UP) 2 'b
Wourzel gesetzt ® © © @,
» Heap Bedingung wird durch Heap-Ovimng
ausfiihren von sink S n
wiederhergestellt 2 woOw
g ® © © 1"

sinkt nach
unten

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne
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Die Operation sink

» Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfiillt ist.

» Element wird mit grosserem Kind
vertauscht.

» Braucht maximal 2log,(N)
Vergleiche.

def sink(a, k):
# Elemente in al[1]..al[N]
while 2 * k <= N:
j =2 %k
if j < N and aljl < alj+1]:

Warteschlangen mit Heaps

verletzt die Heap-Ordnung
(kleiner als ein Kindknoten)

& N & ®
10
& D@ ©

Quelle: Abbiludung 2.29: Algorithmen,

j += 1 Sedgewick & Wayne
if not alk] < aljl:

break
aljl, alk]l = alkl, alj]
k=]
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Implementation

ZJupyter Untitied wesmea
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Algorithmen und Datenstrukturen

Interaktive Experimente

Py and matplotlin
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Komplexitat

Theorem

Warteschlangen mit Heaps

In einer Vorrangwarteschlange mit N Elementen benétigen die
Heap-Algorithmen zum Einfiigen eines neuen Elements nicht mehr
als 1+ log,(N) Vergleiche und zum Entfernen des gréssten
Elements nicht mehr als 2log,(N) Vergleiche.
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B5.4 Heapsort
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Heapsort

» |dee: Geschicktes verwenden von swim und sink ldsst uns
heapsort in-place verwenden.

» Prozedur verlauft in zwei Phasen:

© Heap Konstruktion (rechts nach Links)
@ Absteigendes Sortieren durch sukkzesives Tauschen von
grosstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), 0, -1):
sink(a, k)

while N > 1:
al1], a[N] = al[N], al1l]
N -=1
sink(a, 1, N)
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Heapsort
Ein Sortieralgorithmus
» Gegeben, ein unsortiertes Array der lange N .
> Fiige alle Elemente der Reihe nach in einen Heap ein.
» Entferne N mal das grosste Element und schreibe es zuriick
ins Array.
Komplexitat
Die Prozedur hat garantierte Laufzeitkomplexitat von
O(N logy(N)).
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Heapsort
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Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick
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Bemerkungen

P Heapsort ist theoretisch wichtig:

> Optimal hinsichtlich Zeit und Speichernutzung
> Laufzeit O(nlog n).
» Zusitzlicher Speicher (O(1))

» Praktische Bedeutung eher klein

» Nutzt CPU Cache nicht effizient, da entfernte Elemente
ausgetauscht werden.

» Heaps sind aber fiir Priority Queues sehr wichtig!
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Heapsort
Implementation
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Zusammenfassung

» Heap-sort Algorithmus von Datenstruktur " getrieben”

» Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen
> Nutzung von Eigenschaften vollstandiger bindre Baume
> Effiziente Implementation mittels Arrays
» Heap Bedingung um grésstes Element zu erhalten

» Verstindnis von Heap ist zentral fiir Algorithmus

» Danach ist Algorithmus einfach zu verstehen
> Laufzeitanalyse trivial
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