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B4. Bäume Definitionen und Eigenschaften

B4.1 Definitionen und Eigenschaften
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B4. Bäume Definitionen und Eigenschaften

Was ist ein Baum

I Struktur um Daten hierarchisch anzuordnen.

Abbildung:
http://www.ub.unibas.ch/bernoulli/index.php/Stammbaum
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B4. Bäume Definitionen und Eigenschaften

Was ist ein Baum

Rekursive Definition
Ein Baum T der Ordnung n ist

I der leere Baum,

I oder besteht aus einem Knoten (der Wurzel) sowie maximal n
Bäumen (den Unterbäumen von T ).

Vergleiche mit Definition von Liste:

Eine Liste L ist

I die leere Liste

I oder ein Element H (Head) gefolgt von einer Liste.
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B4. Bäume Definitionen und Eigenschaften

Beispiele

Eine Liste ist ein Spezialfall eines Baumes (Baum der Ordnung 1)
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B4. Bäume Definitionen und Eigenschaften

Terminologie
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B4. Bäume Definitionen und Eigenschaften

Wichtigster Spezialfall: Binärbaum

Binärbaum (Binary Tree)

Ein Binärbaum T ist

I der leere Baum

I oder besteht aus einem Knoten (genannt Wurzel) sowie
maximal 2 Binärbäumen (den Unterbäumen von T ).

I Binärbäume haben jede
Menge Anwendungen

I Unser aktueller Fokus

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 19



B4. Bäume Definitionen und Eigenschaften

Terminologie (2)

I Voller Binärbaum: Jeder Knoten hat 0 oder 2 Kinder

I Vollständiger (oder kompletter) Binärbaum: Alle Ebenen sind
vollständig gefüllt ausser evtl. die letzte Ebene wobei nur
Blätter rechts fehlen dürfen.

I Perfekter Binärbaum: Alle internen Knoten haben genau 2
Kinder und alle Blätter sind auf der gleichen Ebene
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B4. Bäume Definitionen und Eigenschaften

Quiz

I Welche der folgenden Bäume sind voll, vollständig oder
perfekt?

I Wie ist es mit dem leeren Baum?
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B4. Bäume Definitionen und Eigenschaften

Höhe eines perfekten Binärbaums

Theorem

Die Höhe eines perfekten Binärbaums der Grösse N (also mit N
Knoten) ist log2(N + 1)− 1.

Beweis.
I Die Anzahl Knoten N eines perfekten Baumes der Höhe h

sind N = 20 + 21 + . . . ,+2h = 2h+1 − 1

I Auflösen nach h ergibt
log2(N + 1) = h + 1⇔ h = log2(N + 1)− 1
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B4. Bäume Definitionen und Eigenschaften

Höhe eines vollständigen Binärbaums

Theorem
Die Höhe eines vollständigen Binärbaums der Grösse N is
blog2(N)c

I Es stimmt für Höhe 0 (Für N = 1 ist log2(1) = 0)
I Die Höhe nimmt nur um 1 zu, wenn N so vergrössert wird,

dass es eine Zweierpotenz wird.
I D.h ein Knoten ist alleine auf der letzten Ebene.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 19



B4. Bäume Traversierung

B4.2 Traversierung
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B4. Bäume Traversierung

Traversierung

Breitenansatz (breadth-first-search). Eine Ebene nach dem
anderen.

Tiefenansatz (depth-first-search). Zuerst in die Tiefe, dann links
nach rechts.

Quelle:http://www.cse.unsw.edu.au/ billw/Justsearch.html
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B4. Bäume Traversierung

Depth-first-search Traversierung

Wir unterscheiden drei Hauptarten der DFS Traversierung:

Preorder Aktueller Knoten zuerst, danach weiter traversieren

Inorder Aktueller Knoten zwischen Traversierung von
Unterbäumen

Postorder Aktueller Knoten nach Traversierung von
Unterbäumen
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B4. Bäume Datenstruktur

B4.3 Datenstruktur
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B4. Bäume Datenstruktur

Datenstruktur für Binärbaum

class Node[Item]:

item : Item

left: Node[Item]

right: Node[Item]

# Konstruktor

NodeTree(item : Item , left : Node[Item], right: Node[Item])

Vergleiche mit verketteter Liste:

class Node[Item]:

item : Item

next : Node

Node(head : Item , next : Node[Item]) # Konstruktor
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B4. Bäume Datenstruktur

Rekursive Interpretation

class BinaryTree[Item]:

item Item

left: BinaryTree[Item]

right: BinaryTree[Item]

BinaryTree(item : Item ,

left : BinaryTree[Item],

right: BinaryTree[Item]

)

I Nichts Neues: Nur neue Interpretation der Knoten (als Baum)

I Nützlich in Implementation
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B4. Bäume Datenstruktur

Implementation

IPython Notebooks: Trees.ipynb
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