
Algorithmen und Datenstrukturen
B4. Bäume

Marcel Lüthi and Gabriele Röger

Universität Basel

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 19

Algorithmen und Datenstrukturen
— B4. Bäume

B4.1 Definitionen und Eigenschaften

B4.2 Traversierung

B4.3 Datenstruktur

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 19

B4. Bäume Definitionen und Eigenschaften

B4.1 Definitionen und Eigenschaften

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 19

B4. Bäume Definitionen und Eigenschaften

Was ist ein Baum

I Struktur um Daten hierarchisch anzuordnen.

Abbildung:
http://www.ub.unibas.ch/bernoulli/index.php/Stammbaum

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 19

B4. Bäume Definitionen und Eigenschaften

Was ist ein Baum

Rekursive Definition
Ein Baum T der Ordnung n ist

I der leere Baum,

I oder besteht aus einem Knoten (der Wurzel) sowie maximal n
Bäumen (den Unterbäumen von T).

Vergleiche mit Definition von Liste:

Eine Liste L ist

I die leere Liste

I oder ein Element H (Head) gefolgt von einer Liste.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 19

B4. Bäume Definitionen und Eigenschaften

Beispiele

Eine Liste ist ein Spezialfall eines Baumes (Baum der Ordnung 1)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 19

B4. Bäume Definitionen und Eigenschaften

Terminologie

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 19

B4. Bäume Definitionen und Eigenschaften

Wichtigster Spezialfall: Binärbaum

Binärbaum (Binary Tree)

Ein Binärbaum T ist

I der leere Baum

I oder besteht aus einem Knoten (genannt Wurzel) sowie
maximal 2 Binärbäumen (den Unterbäumen von T).

I Binärbäume haben jede
Menge Anwendungen

I Unser aktueller Fokus

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 19

B4. Bäume Definitionen und Eigenschaften

Terminologie (2)

I Voller Binärbaum: Jeder Knoten hat 0 oder 2 Kinder

I Vollständiger (oder kompletter) Binärbaum: Alle Ebenen sind
vollständig gefüllt ausser evtl. die letzte Ebene wobei nur
Blätter rechts fehlen dürfen.

I Perfekter Binärbaum: Alle internen Knoten haben genau 2
Kinder und alle Blätter sind auf der gleichen Ebene

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 19

B4. Bäume Definitionen und Eigenschaften

Quiz

I Welche der folgenden Bäume sind voll, vollständig oder
perfekt?

I Wie ist es mit dem leeren Baum?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 19

B4. Bäume Definitionen und Eigenschaften

Höhe eines perfekten Binärbaums

Theorem

Die Höhe eines perfekten Binärbaums der Grösse N (also mit N
Knoten) ist log2(N + 1)− 1.

Beweis.
I Die Anzahl Knoten N eines perfekten Baumes der Höhe h

sind N = 20 + 21 + . . . ,+2h = 2h+1 − 1

I Auflösen nach h ergibt
log2(N + 1) = h + 1⇔ h = log2(N + 1)− 1

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 19

B4. Bäume Definitionen und Eigenschaften

Höhe eines vollständigen Binärbaums

Theorem
Die Höhe eines vollständigen Binärbaums der Grösse N is
blog2(N)c

I Es stimmt für Höhe 0 (Für N = 1 ist log2(1) = 0)
I Die Höhe nimmt nur um 1 zu, wenn N so vergrössert wird,

dass es eine Zweierpotenz wird.
I D.h ein Knoten ist alleine auf der letzten Ebene.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 19

B4. Bäume Traversierung

B4.2 Traversierung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 19

B4. Bäume Traversierung

Traversierung

Breitenansatz (breadth-first-search). Eine Ebene nach dem
anderen.

Tiefenansatz (depth-first-search). Zuerst in die Tiefe, dann links
nach rechts.

Quelle:http://www.cse.unsw.edu.au/ billw/Justsearch.html

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 19

B4. Bäume Traversierung

Depth-first-search Traversierung

Wir unterscheiden drei Hauptarten der DFS Traversierung:

Preorder Aktueller Knoten zuerst, danach weiter traversieren

Inorder Aktueller Knoten zwischen Traversierung von
Unterbäumen

Postorder Aktueller Knoten nach Traversierung von
Unterbäumen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 19

B4. Bäume Datenstruktur

B4.3 Datenstruktur

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 19

B4. Bäume Datenstruktur

Datenstruktur für Binärbaum

class Node[Item]:

item : Item

left: Node[Item]

right: Node[Item]

Konstruktor

NodeTree(item : Item , left : Node[Item], right: Node[Item])

Vergleiche mit verketteter Liste:

class Node[Item]:

item : Item

next : Node

Node(head : Item , next : Node[Item]) # Konstruktor

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 19

B4. Bäume Datenstruktur

Rekursive Interpretation

class BinaryTree[Item]:

item Item

left: BinaryTree[Item]

right: BinaryTree[Item]

BinaryTree(item : Item ,

left : BinaryTree[Item],

right: BinaryTree[Item]

)

I Nichts Neues: Nur neue Interpretation der Knoten (als Baum)

I Nützlich in Implementation

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 19

B4. Bäume Datenstruktur

Implementation

IPython Notebooks: Trees.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 19

	Definitionen und Eigenschaften
	

	Traversierung
	

	Datenstruktur
	

