
Algorithmen und Datenstrukturen
B3. ADTs , Bags, Stack and Queues

Marcel Lüthi and Gabriele Röger

Universität Basel

07. März 2021

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 1 / 31

Algorithmen und Datenstrukturen
07. März 2021 — B3. ADTs , Bags, Stack and Queues

B3.1 Abstrakte Datentypen

B3.2 Multimengen, Warteschlange und Stapel

B3.3 Anwendung von Stacks

B3.4 Priority Queues

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 2 / 31

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

B3.1 Abstrakte Datentypen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 3 / 31

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Abstrakte Datentypen : Definition

Abstrakter Datentyp

Ein abstrakter Datentyp ist eine Sammlung von Daten mit den
darauf anwendbaren Operationen.

Beispiele:

I Integer mit arithmetischen Operationen

I Komplexe Zahlen mit Operationen add und subtract

I Mengen mit Operationen union, intersection und setminus

I Geordnete Sequenz von von Objekten

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 4 / 31

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Abstrakte Datentypen und Klassen

I Abstrakte Datentypen entsprechen Klassen in OO
Programmierung

public class Complex {

private double real;

private double imag;

public Complex(double real , double imag) { ... }

public Complex(double magnitude , double phase) { ... }

public Complex add(Complex c1, Complex c2) { ... }

public Complex subtract(Complex c1, Complex c2) { ... }

...

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 5 / 31

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Vorteile von Abstrakten Datentypen

I Nutzer programmiert gegen Schnittstelle
I Verwendete Datenstruktur (Repräsentation) ist versteckt

(gekapselt)
I Repräsentation kann jederzeit ausgetauscht werden

I Verständnis auf zwei Ebenen
1 Was macht der Datentyp (Schnittstelle)
2 Wie wird es gemacht (Interne Datenstruktur)

I Erlaubt komplexe Sachverhalte zu abstrahieren

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 6 / 31

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Beispiel: Listen in Java

interface List <E>:

E get(int index);

void add(E element);

void add(int pos , E element);

...

Achtung

Verschiedene Listen haben dieselbe Schnittstelle, aber Operationen
haben nicht dieselbe Komplexität.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 7 / 31

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Datentypdesign

Wir werden für jeden Datentyp folgende Punkte besprechen

I Beschreiben der Schnittstelle (API)

I Beispielanwendungen (Client) die die Schnittstelle nutzen

I Implementation

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 8 / 31

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Quiz: Abstrakte Datentypen

I Ist eine verkettete Liste ein Datentyp oder eine Datenstruktur?
I Ist ein Array nur eine Datenstruktur oder auch Abstrakter

Datentyp?
I Was wären die Operationen auf einem Array, welche den ADT

Array Charakterisieren?
I Welche Datenstruktur würden Sie für die Implementation eines

Array Datentyps verwenden?

I Was ist die Gefahr, bei der Verwendung eines abstrakten
Datentypen?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 9 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

B3.2 Multimengen, Warteschlange
und Stapel

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 10 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Ein Besuch in der Mensa

(Teller-)Stapel
Multimenge (von
Essen) Schlange

Stapel, Multimenge und Schlangen begegnen uns in verschiedenen
Situation im täglichen Leben.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 11 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Multimengen (Bag)

class Bag[Item]:

Element hinzufuegen

def add(item : Item) -> Item

Ist die Multimenge leer?

def isEmpty () -> bool

Wieviele Elemente sind in der Menge?

def size() -> int

Abstraktion um ueber Elemente zu iterieren

def iterator () -> Iterator[Item]

}

I Anmerkung: Typ Annotation angelehnt an Python Typing
Module (PEP 484)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 12 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Multimenge (bag)

I Undefinierte Reihenfolge der
Elemente
I Welches Element man

nimmt ist undefiniert.
I Aber: Jedes Element wird

nur einmal entnommen

I Nicht zu verwechseln mit
Liste / Array, die die
Reihenfolge garantieren.

Quelle: Abbildung 1.30 - Algorithms,
Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 13 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Warteschlange (Queue)

class Queue[Item] {

Element zu Schlange hinzufuegen

def enqueue(item : Item)

Element von Schlange entfernen

def dequeue () -> Item

Anzahl Elemente in der Schlange

def size() -> int //

Ist die Schlange leer?

def isEmpty () -> bool

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 14 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Warteschlange (queue)

I Reihenfolge: First in - first
out.
I Elemente werden nur von

vorne entnommen
I Elemente werden nur von

hinten hinzugefügt.

I Anwendung:
Zwischenspeicher von
Elementen, ohne dass die
Reihenfolge verändert wird.

Quelle: Abbildung 1.31, Algorithmen,
Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 15 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Stapel (Stack)

class Stack[Item] {

Element zu Stapel hinzufuegen

def push(item : Item)

Element von Stapel entfernen

def pop() -> Item // Element entnehmen

Ist Stapel leer?

def isEmpty () -> Boolean

Anzahl Element in Stapel

def size() -> int

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 16 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Stapel (Stack)

I Reihenfolge: last in - first out
(LIFO)
I Jedes element wird oben den

Stapel gelegt.
I Nur oberstes Element kann

entfernt werden.

I Anwendung: Stapeln und
Schachtelung von Dingen
I Verschachtelte Funktionen /

arithmetische Ausdrücke
I E-Mail organisation
I Browser history (back button)

Quelle: Abbildung 1.32,
Algorithmen, Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 17 / 31

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Multimengen, Warteschlangen und Stapel

I Nichts Neues: Nur Listen mit eingeschränkter Funktionalität

I In Python: Alle Operationen definiert im Datentype List
Siehe: https://docs.python.org/3.1/tutorial/datastructures.html

Einschränkungen helfen Intention und Nutzung klar zu machen und
Fehler in Nutzung zu verhindern.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 18 / 31

https://docs.python.org/3.1/tutorial/datastructures.html

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

ADTs in Bibliotheken (Java)

I ADTs sind heute Teil jeder Standardbibliothek

Quelle: By Ramlmn - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=64043967

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 19 / 31

https://commons.wikimedia.org/w/index.php?curid=64043967

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Beispiele und Implementation

IPython Notebooks: fundamental-adts.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 20 / 31

B3. ADTs , Bags, Stack and Queues Anwendung von Stacks

B3.3 Anwendung von Stacks

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 21 / 31

B3. ADTs , Bags, Stack and Queues Anwendung von Stacks

Auswerten arithmetischer Operationen

Beispiel: (1 + ((2 + 3) ∗ (4 ∗ 5)))

Two-Stack Algorithmus (Dijkstra)

I Wert: push auf Wertestapel

I Operator: push auf
Operatorenstapel

I Linke Klammer: Ignorieren
I Rechte Klammer: pop Operator

und zwei Werte
I Operation auf Werte anwenden
I push Resultat der Operation auf

Wertestapel
Quelle: https://algs4.cs.princeton.edu/
lectures/13StacksAndQueues-2x2.pdf

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 22 / 31

https://algs4.cs.princeton.edu/lectures/13StacksAndQueues-2x2.pdf
https://algs4.cs.princeton.edu/lectures/13StacksAndQueues-2x2.pdf

B3. ADTs , Bags, Stack and Queues Anwendung von Stacks

Warum funktioniert das?

Beobachtung:
I Nach Auswertung eines geklammerten Ausdrucks ist der Stack

im selben Zustand wie wenn der Wert anstelle des Ausdrucks
gestanden hätte.
I (1 + ((2 + 3) ∗ (4 ∗ 5))) wird zu (1 + (5 ∗ (4 ∗ 5)))
I (1 + (5 ∗ (4 ∗ 5))) wird zu (1 + (5 ∗ 20)
I (1 + (5 ∗ 20)) wird zu (1 + 100)
I (1 + 100) wird zu 101

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 23 / 31

B3. ADTs , Bags, Stack and Queues Priority Queues

B3.4 Priority Queues

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 24 / 31

B3. ADTs , Bags, Stack and Queues Priority Queues

Vorrangwarteschlangen (Priority Queue)

Anwendung:

I Grösste Elemente müssen verabeitet werden. Nicht alle auf
einmal.

Beispiele:

I Job-Scheduling (Elemente: Prioritäten von Prozessen)

I Numerische Berechung: (Elemente: Berechnungsfehler, die
zuerst zu beheben sind)

I Simulationssysteme (Elemente (Schlüssel): Ereigniszeiten)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 25 / 31

B3. ADTs , Bags, Stack and Queues Priority Queues

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen

def insert(k : Item) -> None

Groesstes Element zurueckgeben

def max() -> Item

Groesstes Element entfernen und zurueckgeben

def delMax () -> Item

Ist die Queue leer?

def isEmpty () -> bool

Anzahl Elemente in der Priority Queue

def size() -> int

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 26 / 31

B3. ADTs , Bags, Stack and Queues Priority Queues

Einfache Implementationen

Arrayrepräsentation
(ungeordnet)

I Insert: Schlüssel zu Array
hinzufügen

I max: Suche grössten
Schlüssel
I - Swap mit letztem

Element
I - Siehe: Selection sort

Arrayrepräsentation
(geordnet)
I Insert: Schlüssel an richtiger

Stelle im Array hinzufügen
I - Siehe: Insertion sort

I max: Letztes Element in
Array zurückgeben.

Datenstruktur Einfügen Grösstes Element entfernen

Ungeordnetes Array 1 N
Geordentes Array N 1

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 27 / 31

B3. ADTs , Bags, Stack and Queues Priority Queues

Beispielclient

Gegeben: Sehr grosser Stream von N Elementen N so gross,
dass Speichern nicht möglich ist.

Gesucht: M grösste Elemente.

Einfachste Implementierungen (Nicht praktikabel)
I Daten werden in Array gespeichert

I Daten werden sortiert und M grösste Elemente zurückgegeben

Bessere Idee
Halte M grösste Elemente in Priority Queue.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 28 / 31

B3. ADTs , Bags, Stack and Queues Priority Queues

Implementation

IPython Notebooks: PQ.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 29 / 31

B3. ADTs , Bags, Stack and Queues Priority Queues

Komplexität Beispielclient

Implementation Zeit Speicher

Sortier-Client N logN N
PQ (einfache Implementation) NM M

I Grosse Vorteile in Laufzeit und Speicherkomplexität wenn
M � N

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 30 / 31

B3. ADTs , Bags, Stack and Queues Priority Queues

Ausblick: Heaps - Ideale Datenstruktur für Priority Queues

Datenstruktur

Datenstruktur Einfügen Grösstes Element entfernen

Geordentes Array N 1
Ungeordnetes Array 1 N

Heap logN logN

Testclient

Implementation Zeit Speicher

Sortier-Client N logN N
PQ (einfache Implementation) NM M

Heap Implementation N logM M

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 07. März 2021 31 / 31

	Abstrakte Datentypen
	

	Multimengen, Warteschlange und Stapel
	

	Anwendung von Stacks
	

	Priority Queues
	

