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Die Datenstruktur Array (Feld)

I Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

I Beschreibt eine Kollektion von fixer Grösse.

In Java:
Byte[] ia = new Byte [100];

String [] sa = new String [100];
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Die Datenstruktur Array (Feld)

Array

Sequenz von Elementen die in gleichmässigen Abständen im
Speicher angeordent sind.
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Laufzeit grundlegender Operationen

I Was ist die Laufzeitkomplexität von folgenden Operationen
(als Funktion der Arraygrösse n)
I get(i) Element an beliebiger Stelle i lesen?
I set(i) - Element an beliebiger Stelle i schreiben?
I length() - Länge von Array bestimmen?
I find(x) - Element x finden und Index zurückliefern?

I Was ist die Speicherkomplexität?

Beobachtung

Komplexität direkte Konsequenz aus der Datenrepräsentation
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Dynamische Arrays

Fixe Grösse ist für viele Anwendungen einschränkend

I Brauchen Arrays, die dynamisch wachsen können.

I Laufzeit Eigenschaften bestehender Methoden sollen gleich
bleiben.

Zusätzliche Funktionen

I append(x) (manchmal push) - Element x ans Ende anfügen

I insert(i, x) - Element x an Stelle i einfügen

I pop() - letztes Element entfernen

I remove(i) - Element an position i löschen

Was ist die Laufzeitkomplexität dieser Funktionen?
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Empirische Laufzeitanalyse, Python Arrays

IPython Notebook: Arrays-und-linked-lists.ipynb
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Arrays vergrössern / verkleinern : Naive Methode

I append (und insert) müssen Array vergrössern.

I pop muss Array verkleinern
I Naive Methode: Jeweils um 1 grösses/kleineres Array anlegen

I Element in neues Array kopieren
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Arrays vergrössern : Schlauere Methode

I append (und insert) müssen Array vergrössern.
I Grösseres Array (von 2n Elementen) anlegen.

I Array muss nur bei jeden n-ten Aufruf von append kopiert
werden.
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Arrays verkleinern : Schlauere Methode

I pop muss Array verkleinern

I Kleineres Array anlegen nur wenn Array zu n/4 gefüllt.
I In neues Array der Grösse n/2 kopieren.

I Array muss nur bei jeden n/4-ten Aufruf von pop kopiert
werden.
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Implementation: Arrays vergrössern / verkleinern (1)

I Implementation der append und pop Methode.

class Array:

_data = [None] # list simulates block of memory

_lastIdx = 0

def append(self , elem):

if len(self._data) == self._lastIdx:

self._resize(len(self._data) * 2)

self._data[self._lastIdx] = elem

self._lastIdx += 1

def pop(self , elem):

self._lastIdx -= 1

item = self._data[self._lastIdx ];

if self._lastIdx > 0

and self._lastIdx == len(self._data) / 4:

self._resize(int(len(self._data) / 2));

return item;
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Implementation: Arrays vergrössern /verkleinern (2)

class Array:

_data = [None] # list simulates block of memory

_lastIdx = 0

def append(self , elem):

...

def pop(self , elem):

...

def _resize(self , numElements ):

newArray = [None] * numElements

for i in range(0, self._lastIdx ):

newArray[i] = self._data[i]

self._data = newArray
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Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1)

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

I Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
über Seqenz von N Operationen (im worst case) ermittelt.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 32

B2. Arrays & Verkettete Listen Arrays

Amortisierte Analyse

IPython Notebook: Arrays-und-linked-lists.ipynb
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Analyse der append Operation: Beweisskizze

Annahmen:

I N ist Zweierpotenz.

I Wir starten mit Array der Grösse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N + 4 + 8 + 16 + . . . + N + 2N

Wir nutzen, dass
∑n

i=0 2i = 2n+1 − 1

N + 4 + 8 + 16 + . . . + N + 2N ≤ 3N +
∑log2 N

i=0 2i =
3N + 2(log2 N)+1 − 1 = 3N + 2 · 2log2 N − 1 ≤ 5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen für N Aufrufe)
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B2.2 Verkettete Listen
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Motivation

I Arrays sind nicht flexibel genug

I Brauchen immer grossen, kontinuierlichen Block an Speicher

I Einfügen von Elementen an beliebiger Position ist teuer

Lösung muss uns erlauben Elemente im Speicher zu verteilen.
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Frage?

I Wie kann man Elemente ordnen die verteilt im Speicher sind?
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Verkettete Listen

I Wichtige, flexible Datenstruktur

I Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger

I Ende muss speziell gekennzeichnet werden (häufig null/None).

I ... oder wir brauchen Referenz auf letztes Element
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Komplexität Array / Verkettete Liste

Operation Array Verkettete Liste

Zugriff auf beliebiges Element O(1) O(n)
Einfügen, Löschen am Anfang O(n) O(1)
Einfügen am Ende O(1) (ammortisiert) O(1)
Löschen am Ende O(1) (ammortisiert) O(n)
Einfügen, Löschen in Mitte O(n) O(n)
Verschwendeter Speicher O(1) O(n)

Take-home Message
I Verschiedene Datenstrukturen machen verschiedene Trade-offs
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Einfügen am Anfang
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Einfügen am Ende
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Weitere Operationen

Einfach:

I Vom Anfang entfernen

I Traversieren

Schwierig:

I Vom Ende entfernen

I An beliebiger Position
einfügen

I An beliebiger Position
entfernen

I Element an beliebiger
Position lesen/schreiben

Einfach/Schwierig bezieht sich auf Aufwand und nicht
Implementation.
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Doppelt verkettete Liste

I Referenz nicht nur auf Nachfolger, sondern auch
vorhergehendes Element

I Macht Entfernen vom Ende günstig.
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Implementation in Python

IPython Notebook: Arrays-und-linked-lists.ipynb
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Rekursive Definition

Eine Liste L ist

I die leere Liste

I oder ein Element H (Head) gefolgt von einer Liste: H, L
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Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:

head : Item

tail : List[Item]

List(head : Item , tail : List[Item]) # Konstruktor

emptyList = List(None , None)
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Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:

head : Item

tail : List[Item]

List(head : Item , tail : List[Item]) # Konstruktor

emptyList = List(None , None)

Vergleiche:

class Node[Item]:

item : Item

next : Node

Node(head : Item , tail : Node[Item]) # Konstruktor
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Verkettete Listen (rekursiv)

I Natürliche, rekursive Implementation vieler Operationen

I Implementation folgt Datenstruktur

def printList(list):

if (list == emptyList ):

return ""

else:

return str(list.head) + printList(list.tail)
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Implementation in Python

IPython Notebook: Arrays-und-linked-lists.ipynb
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