
Algorithmen und Datenstrukturen
B2. Arrays & Verkettete Listen

Marcel Lüthi and Gabriele Röger

Universität Basel

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 1 / 32

Algorithmen und Datenstrukturen
— B2. Arrays & Verkettete Listen

B2.1 Arrays

B2.2 Verkettete Listen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 2 / 32

B2. Arrays & Verkettete Listen Arrays

B2.1 Arrays

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 3 / 32

B2. Arrays & Verkettete Listen Arrays

Die Datenstruktur Array (Feld)

I Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

I Beschreibt eine Kollektion von fixer Grösse.

In Java:
Byte[] ia = new Byte [100];

String [] sa = new String [100];

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4 / 32



B2. Arrays & Verkettete Listen Arrays

Die Datenstruktur Array (Feld)

Array

Sequenz von Elementen die in gleichmässigen Abständen im
Speicher angeordent sind.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 5 / 32

B2. Arrays & Verkettete Listen Arrays

Laufzeit grundlegender Operationen

I Was ist die Laufzeitkomplexität von folgenden Operationen
(als Funktion der Arraygrösse n)
I get(i) Element an beliebiger Stelle i lesen?
I set(i) - Element an beliebiger Stelle i schreiben?
I length() - Länge von Array bestimmen?
I find(x) - Element x finden und Index zurückliefern?

I Was ist die Speicherkomplexität?

Beobachtung

Komplexität direkte Konsequenz aus der Datenrepräsentation

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6 / 32

B2. Arrays & Verkettete Listen Arrays

Dynamische Arrays

Fixe Grösse ist für viele Anwendungen einschränkend

I Brauchen Arrays, die dynamisch wachsen können.

I Laufzeit Eigenschaften bestehender Methoden sollen gleich
bleiben.

Zusätzliche Funktionen

I append(x) (manchmal push) - Element x ans Ende anfügen

I insert(i, x) - Element x an Stelle i einfügen

I pop() - letztes Element entfernen

I remove(i) - Element an position i löschen

Was ist die Laufzeitkomplexität dieser Funktionen?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 7 / 32

B2. Arrays & Verkettete Listen Arrays

Empirische Laufzeitanalyse, Python Arrays

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 8 / 32



B2. Arrays & Verkettete Listen Arrays

Arrays vergrössern / verkleinern : Naive Methode

I append (und insert) müssen Array vergrössern.

I pop muss Array verkleinern
I Naive Methode: Jeweils um 1 grösses/kleineres Array anlegen

I Element in neues Array kopieren

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9 / 32

B2. Arrays & Verkettete Listen Arrays

Arrays vergrössern : Schlauere Methode

I append (und insert) müssen Array vergrössern.
I Grösseres Array (von 2n Elementen) anlegen.

I Array muss nur bei jeden n-ten Aufruf von append kopiert
werden.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10 / 32

B2. Arrays & Verkettete Listen Arrays

Arrays verkleinern : Schlauere Methode

I pop muss Array verkleinern

I Kleineres Array anlegen nur wenn Array zu n/4 gefüllt.
I In neues Array der Grösse n/2 kopieren.

I Array muss nur bei jeden n/4-ten Aufruf von pop kopiert
werden.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 11 / 32

B2. Arrays & Verkettete Listen Arrays

Implementation: Arrays vergrössern / verkleinern (1)

I Implementation der append und pop Methode.

class Array:

_data = [None] # list simulates block of memory

_lastIdx = 0

def append(self , elem):

if len(self._data) == self._lastIdx:

self._resize(len(self._data) * 2)

self._data[self._lastIdx] = elem

self._lastIdx += 1

def pop(self , elem):

self._lastIdx -= 1

item = self._data[self._lastIdx ];

if self._lastIdx > 0

and self._lastIdx == len(self._data) / 4:

self._resize(int(len(self._data) / 2));

return item;

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 12 / 32



B2. Arrays & Verkettete Listen Arrays

Implementation: Arrays vergrössern /verkleinern (2)

class Array:

_data = [None] # list simulates block of memory

_lastIdx = 0

def append(self , elem):

...

def pop(self , elem):

...

def _resize(self , numElements ):

newArray = [None] * numElements

for i in range(0, self._lastIdx ):

newArray[i] = self._data[i]

self._data = newArray

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 13 / 32

B2. Arrays & Verkettete Listen Arrays

Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1)

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

I Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
über Seqenz von N Operationen (im worst case) ermittelt.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 14 / 32

B2. Arrays & Verkettete Listen Arrays

Amortisierte Analyse

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 15 / 32

B2. Arrays & Verkettete Listen Arrays

Analyse der append Operation: Beweisskizze

Annahmen:

I N ist Zweierpotenz.

I Wir starten mit Array der Grösse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N + 4 + 8 + 16 + . . . + N + 2N

Wir nutzen, dass
∑n

i=0 2i = 2n+1 − 1

N + 4 + 8 + 16 + . . . + N + 2N ≤ 3N +
∑log2 N

i=0 2i =
3N + 2(log2 N)+1 − 1 = 3N + 2 · 2log2 N − 1 ≤ 5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen für N Aufrufe)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 16 / 32



B2. Arrays & Verkettete Listen Verkettete Listen

B2.2 Verkettete Listen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Motivation

I Arrays sind nicht flexibel genug

I Brauchen immer grossen, kontinuierlichen Block an Speicher

I Einfügen von Elementen an beliebiger Position ist teuer

Lösung muss uns erlauben Elemente im Speicher zu verteilen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Frage?

I Wie kann man Elemente ordnen die verteilt im Speicher sind?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 19 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Frage?

I Wie kann man Elemente ordnen die verteilt im Speicher sind?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 20 / 32



B2. Arrays & Verkettete Listen Verkettete Listen

Verkettete Listen

I Wichtige, flexible Datenstruktur

I Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger

I Ende muss speziell gekennzeichnet werden (häufig null/None).

I ... oder wir brauchen Referenz auf letztes Element

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Komplexität Array / Verkettete Liste

Operation Array Verkettete Liste

Zugriff auf beliebiges Element O(1) O(n)
Einfügen, Löschen am Anfang O(n) O(1)
Einfügen am Ende O(1) (ammortisiert) O(1)
Löschen am Ende O(1) (ammortisiert) O(n)
Einfügen, Löschen in Mitte O(n) O(n)
Verschwendeter Speicher O(1) O(n)

Take-home Message
I Verschiedene Datenstrukturen machen verschiedene Trade-offs

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 22 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Einfügen am Anfang

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 23 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Einfügen am Ende

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24 / 32



B2. Arrays & Verkettete Listen Verkettete Listen

Weitere Operationen

Einfach:

I Vom Anfang entfernen

I Traversieren

Schwierig:

I Vom Ende entfernen

I An beliebiger Position
einfügen

I An beliebiger Position
entfernen

I Element an beliebiger
Position lesen/schreiben

Einfach/Schwierig bezieht sich auf Aufwand und nicht
Implementation.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 25 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Doppelt verkettete Liste

I Referenz nicht nur auf Nachfolger, sondern auch
vorhergehendes Element

I Macht Entfernen vom Ende günstig.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 26 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Implementation in Python

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 27 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Rekursive Definition

Eine Liste L ist

I die leere Liste

I oder ein Element H (Head) gefolgt von einer Liste: H, L

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28 / 32



B2. Arrays & Verkettete Listen Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:

head : Item

tail : List[Item]

List(head : Item , tail : List[Item]) # Konstruktor

emptyList = List(None , None)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 29 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:

head : Item

tail : List[Item]

List(head : Item , tail : List[Item]) # Konstruktor

emptyList = List(None , None)

Vergleiche:

class Node[Item]:

item : Item

next : Node

Node(head : Item , tail : Node[Item]) # Konstruktor

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 30 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Verkettete Listen (rekursiv)

I Natürliche, rekursive Implementation vieler Operationen

I Implementation folgt Datenstruktur

def printList(list):

if (list == emptyList ):

return ""

else:

return str(list.head) + printList(list.tail)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 31 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Implementation in Python

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 32 / 32


	Arrays
	

	Verkettete Listen
	


