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B2. Arrays & Verkettete Listen

Die Datenstruktur Array (Feld)

» Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

» Beschreibt eine Kollektion von fixer Grosse.

In Java:

Byte[] ia = new Byte[100];
String[] sa = new String[100];
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Die Datenstruktur Array (Feld)

Array
Sequenz von Elementen die in gleichméassigen Absténden im
Speicher angeordent sind.
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adresse >
h|a]l I | o wle |l |t
e
Index >
0 1 2 9

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 5 /32

B2. Arrays & Verkettete Listen

Laufzeit grundlegender Operationen

> Was ist die Laufzeitkomplexitdt von folgenden Operationen
(als Funktion der Arraygrosse n)

> get (i) Element an beliebiger Stelle i lesen?

> set(i) - Element an beliebiger Stelle i schreiben?

> length() - Lange von Array bestimmen?

» find(x) - Element x finden und Index zuriickliefern?

» Was ist die Speicherkomplexitit?

Beobachtung
Komplexitat direkte Konsequenz aus der Datenrepradsentation
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Dynamische Arrays

Fixe Grosse ist fiir viele Anwendungen einschrankend
» Brauchen Arrays, die dynamisch wachsen konnen.

> Laufzeit Eigenschaften bestehender Methoden sollen gleich
bleiben.

Zusatzliche Funktionen
» append(x) (manchmal push) - Element x ans Ende anfiigen
» insert(i, x) - Element x an Stelle i einfligen
> pop() - letztes Element entfernen
> remove (i) - Element an position i lschen

Was ist die Laufzeitkomplexitat dieser Funktionen?
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Empirische Laufzeitanalyse, Python Arrays
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Arrays vergrossern / verkleinern : Naive Methode

» append (und insert) miissen Array vergrossern.
P> pop muss Array verkleinern

» Naive Methode: Jeweils um 1 grosses/kleineres Array anlegen
» Element in neues Array kopieren
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Arrays vergrossern @ Schlauere Methode

» append (und insert) miissen Array vergrossern.
» Grosseres Array (von 2n Elementen) anlegen.

> Array muss nur bei jeden n-ten Aufruf von append kopiert
werden.
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Arrays verkleinern : Schlauere Methode

> pop muss Array verkleinern

» Kleineres Array anlegen nur wenn Array zu n/4 gefiillt.
» In neues Array der Grosse n/2 kopieren.

» Array muss nur bei jeden n/4-ten Aufruf von pop kopiert
werden.

Spoicher 0034 D0%5_ 0036 or03b
aresse
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Implementation: Arrays vergrossern / verkleinern (1)

» Implementation der append und pop Methode.

class Array:
_data = [Nonel] # list
_lastIdx = 0

simulates block of memory

def append(self, elem):
if len(self._data) == self._lastIdx:
self. _resize(len(self._data) * 2)
self._datal[self._lastIdx] = elem
self._lastIdx += 1

def pop(self, elem):
self._lastIdx -= 1

item = self._datalself._lastIdx];
if self._lastIdx > O

and self._lastIdx == len(self._data) / 4:
self._resize(int(len(self._data) / 2));

return item;
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Implementation: Arrays vergrossern /verkleinern (2)

class Array:
_data = [Nonel # list simulates block of memory
_lastIdx = 0

def append(self, elem):
def pop(self, elem):

def _resize(self, numElements ):
newArray = [None] * numElements
for i in range(0, self._lastIdx):
newArray[i] = self._datal[il]
self._data = newArray
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Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1)

256 —

ein grauer Punkt 128
fiir jede Operation /
64
/ rote Punkte fiir den

kumulativen Durchschnitt

Anzahl append Operationen |

0 128

© Kosten (Arrayverweise)

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

» Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
iiber Seqenz von N Operationen (im worst case) ermittelt.
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Amortisierte Analyse
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Analyse der append Operation: Beweisskizze

Annahmen:
> N ist Zweierpotenz.
» Wir starten mit Array der Grosse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N+4+8+16+...+N+2N

Wir nutzen, dass > 7,2/ =21 — 1
NA+4+8+16+... 4+ N+2N <3N+ 3%V oi =
3N 4 20ee M)+l _ 1 — 3 4 2.2l N _ 1 < 5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen fiir N Aufrufe)
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B2.2 Verkettete Listen

B2. Arrays & Verkettete Listen Verkettete Listen

Motivation

» Arrays sind nicht flexibel genug
» Brauchen immer grossen, kontinuierlichen Block an Speicher

» Einfligen von Elementen an beliebiger Position ist teuer

Losung muss uns erlauben Elemente im Speicher zu verteilen.
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Frage?

» Wie kann man Elemente ordnen die verteilt im Speicher sind?

not
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Frage?
» Wie kann man Elemente ordnen die verteilt im Speicher sind?
not
first
A not
\\ by
\\\ /
next .
\
\
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Verkettete Listen

» Wichtige, flexible Datenstruktur

» Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger

» Ende muss speziell gekennzeichnet werden (haufig null/None).

» ... oder wir brauchen Referenz auf letztes Element

(last)

Item 1 Item 2 Itemn | end
first | next - next _— next _ /

next
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Komplexitdt Array / Verkettete Liste

Verkettete Listen

Operation Array Verkettete Liste
Zugriff auf beliebiges Element  O(1) O(n)
Einfiigen, Léschen am Anfang  O(n) 0(1)
Einfiigen am Ende O(1) (ammortisiert) O(1)
Loschen am Ende O(1) (ammortisiert) O(n)
Einfiigen, Loschen in Mitte O(n) O(n)
Verschwendeter Speicher 0(1) O(n)

Take-home Message
» Verschiedene Datenstrukturen machen verschiedene Trade-offs
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Einfligen am Anfang
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Einfiigen am Ende
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Weitere Operationen

Einfach:

> Vom Anfang entfernen

Schwierig:

> Traversieren

einfiigen

entfernen

Einfach/Schwierig bezieht sich auf Aufwand und nicht
Implementation.
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» Vom Ende entfernen

» An beliebiger Position
» An beliebiger Position

» Element an beliebiger
Position lesen/schreiben
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Doppelt verkettete Liste

Verkettete Listen

» Referenz nicht nur auf Nachfolger, sondern auch
vorhergehendes Element

» Macht Entfernen vom Ende giinstig.

. A tem1 | Jrem2 | .. o Itemn |~ end
first - next \ next \ next \ next |

4 — prev prev prev prev
en

last
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Implementation in Python
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Rekursive Definition

Eine Liste L ist

» die leere Liste

» oder ein Element H (Head) gefolgt von einer Liste: H, L

Head

Liste

Head Liste

Head Liste
Head

Head | []
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Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List (head : Item, tail List[Item]) # Komnstruktor

emptyList = List(None, None)

head 1 A head2 | + .. B
tail |~ tail |~ tail | -
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Verkettete Listen (rekursiv)

» Natiirliche, rekursive Implementation vieler Operationen
» Implementation folgt Datenstruktur

def printList(list):
if (list == emptyList):
return ""
else:

return str(list.head) + printList(list.tail)
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Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List (head : Item, tail List[Item]) # Komnstruktor

emptyList = List(None, None)

Vergleiche:

class Node[Item]:
item : Item
next : Node

Node (head : Item, tail Node[Item]) # Konstruktor
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Implementation in Python

Zjupyter untitled ases
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Interaktive Experimente
Lo 13]: Spylab inline

Populating the interactive namespace from numpy and matplotlin

1n [7]: plot(linspace(0, 1000), (linspace(0,1000) **2))
Outl7l: l<matplotlib. linas.Tine2 at 0x29d8ba022e8> ]
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