Algorithmen und Datenstrukturen
B2. Arrays & Verkettete Listen

Marcel Liithi and Gabriele Roger

Universitat Basel

Algorithmen und Datenstrukturen
— B2. Arrays & Verkettete Listen

B2.1 Arrays

B2.2 Verkettete Listen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 1/32
B2. Arrays & Verkettete Listen Arrays
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 3/32

B2. Arrays & Verkettete Listen

Die Datenstruktur Array (Feld)

» Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

» Beschreibt eine Kollektion von fixer Grosse.

In Java:

Byte[] ia = new Byte[100];
String[] sa = new String[100];

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Arrays

B2. Arrays & Verkettete Listen Arrays

Die Datenstruktur Array (Feld)

Array
Sequenz von Elementen die in gleichméassigen Absténden im
Speicher angeordent sind.

Speicher 0x03e4 0x03e5 0x03eb 0x03ed
adresse >
h|a]l I | o wle |l |t
e
Index >
0 1 2 9

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 5 /32

B2. Arrays & Verkettete Listen

Laufzeit grundlegender Operationen

> Was ist die Laufzeitkomplexitdt von folgenden Operationen
(als Funktion der Arraygrosse n)

> get (i) Element an beliebiger Stelle i lesen?

> set(i) - Element an beliebiger Stelle i schreiben?

> length() - Lange von Array bestimmen?

» find(x) - Element x finden und Index zuriickliefern?

» Was ist die Speicherkomplexitit?

Beobachtung
Komplexitat direkte Konsequenz aus der Datenrepradsentation

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Arrays

B2. Arrays & Verkettete Listen Arrays

Dynamische Arrays

Fixe Grosse ist fiir viele Anwendungen einschrankend
» Brauchen Arrays, die dynamisch wachsen konnen.

> Laufzeit Eigenschaften bestehender Methoden sollen gleich
bleiben.

Zusatzliche Funktionen
» append(x) (manchmal push) - Element x ans Ende anfiigen
» insert(i, x) - Element x an Stelle i einfligen
> pop() - letztes Element entfernen
> remove (i) - Element an position i lschen

Was ist die Laufzeitkomplexitat dieser Funktionen?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 7 /32

B2. Arrays & Verkettete Listen

Empirische Laufzeitanalyse, Python Arrays

Zjupyter untitled ases
File Edit View Inset Cell Kemel Help # | Python [Root] O

B+ & B ¢ N EC Coue Y B Celloobar & @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

Lo 13]: Spylab inline

rom numpy and matplotlin

1000000

#0000

00000

400000

200000

%0 W0 w0 W0 000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Arrays

8 /32

B2. Arrays & Verkettete Listen

Arrays vergrossern / verkleinern : Naive Methode

» append (und insert) miissen Array vergrossern.
P> pop muss Array verkleinern

» Naive Methode: Jeweils um 1 grosses/kleineres Array anlegen
» Element in neues Array kopieren

Speicher Dset_ 03500365
airesss

owed
'

(Lol el fwlelr]e]

o

ndex

N s
“_Kopieren
P

.
Spelcher Dzet 04035 00366
e

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Arrays

B2. Arrays & Verkettete Listen

Arrays vergrossern @ Schlauere Methode

» append (und insert) miissen Array vergrossern.
» Grosseres Array (von 2n Elementen) anlegen.

> Array muss nur bei jeden n-ten Aufruf von append kopiert
werden.

owsed
—

(Lol [el fwlelr]e]
—

o

ndex

B
\\Kopleren

Speichor Dzod 04030500366
adresse

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Arrays

10 / 32

B2. Arrays & Verkettete Listen

Arrays verkleinern : Schlauere Methode

> pop muss Array verkleinern

» Kleineres Array anlegen nur wenn Array zu n/4 gefiillt.
» In neues Array der Grosse n/2 kopieren.

» Array muss nur bei jeden n/4-ten Aufruf von pop kopiert
werden.

Spoicher 0034 D0%5_ 0036 or03b
aresse

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

11/

Arrays

32

B2. Arrays & Verkettete Listen

Implementation: Arrays vergrossern / verkleinern (1)

» Implementation der append und pop Methode.

class Array:
_data = [Nonel] # list
_lastIdx = 0

simulates block of memory

def append(self, elem):
if len(self._data) == self._lastIdx:
self. _resize(len(self._data) * 2)
self._datal[self._lastIdx] = elem
self._lastIdx += 1

def pop(self, elem):
self._lastIdx -= 1

item = self._datalself._lastIdx];
if self._lastIdx > O

and self._lastIdx == len(self._data) / 4:
self._resize(int(len(self._data) / 2));

return item;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

12

Arrays

/ 32

B2. Arrays & Verkettete Listen

Implementation: Arrays vergrossern /verkleinern (2)

class Array:
_data = [Nonel # list simulates block of memory
_lastIdx = 0

def append(self, elem):
def pop(self, elem):

def _resize(self, numElements):
newArray = [None] * numElements
for i in range(0, self._lastIdx):
newArray[i] = self._datal[il]
self._data = newArray

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Arrays

13/

32

B2. Arrays & Verkettete Listen Arrays

Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1)

256 —

ein grauer Punkt 128
fiir jede Operation /
64
/ rote Punkte fiir den

kumulativen Durchschnitt

Anzahl append Operationen |

0 128

© Kosten (Arrayverweise)

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

» Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
iiber Seqenz von N Operationen (im worst case) ermittelt.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 14 / 32

B2. Arrays & Verkettete Listen

Amortisierte Analyse

ZJupyter Untitied wesmea
File Edt View Inset Cell Kemel Help # | Python [Root] O

B+ & B ¢ N EC Coue Y & Celloobar & @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

numpy and matplotlin

1n [7]: plot(lin

k)
Outl7): L<matplotiib.linas.Tine2n a

1000000

#0000

00000

400000

200000

0 W0 w0 W0 000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Arrays

15 /

32

B2. Arrays & Verkettete Listen Arrays

Analyse der append Operation: Beweisskizze

Annahmen:
> N ist Zweierpotenz.
» Wir starten mit Array der Grosse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N+4+8+16+...+N+2N

Wir nutzen, dass > 7,2/ =21 — 1
NA+4+8+16+... 4+ N+2N <3N+ 3%V oi =
3N 4 20ee M)+l _ 1 — 3 4 2.2l N _ 1 < 5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen fiir N Aufrufe)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 16 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

B2.2 Verkettete Listen

B2. Arrays & Verkettete Listen Verkettete Listen

Motivation

» Arrays sind nicht flexibel genug
» Brauchen immer grossen, kontinuierlichen Block an Speicher

» Einfligen von Elementen an beliebiger Position ist teuer

Losung muss uns erlauben Elemente im Speicher zu verteilen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17 / 32
B2. Arrays & Verkettete Listen Verkettete Listen
Frage?

» Wie kann man Elemente ordnen die verteilt im Speicher sind?

not

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 19 / 32

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18 / 32
B2. Arrays & Verkettete Listen Verkettete Listen
Frage?
» Wie kann man Elemente ordnen die verteilt im Speicher sind?
not
first
A not
\\ by
\\\ /
next .
\
\
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20 / 32

B2. Arrays & Verkettete Listen

Verkettete Listen

» Wichtige, flexible Datenstruktur

» Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger

» Ende muss speziell gekennzeichnet werden (haufig null/None).

» ... oder wir brauchen Referenz auf letztes Element

(last)

Item 1 Item 2 Itemn | end
first | next - next _— next _ /

next

M. Liithi, G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

Verkettete Listen

21 /32

B2. Arrays & Verkettete Listen

Komplexitdt Array / Verkettete Liste

Verkettete Listen

Operation Array Verkettete Liste
Zugriff auf beliebiges Element O(1) O(n)
Einfiigen, Léschen am Anfang O(n) 0(1)
Einfiigen am Ende O(1) (ammortisiert) O(1)
Loschen am Ende O(1) (ammortisiert) O(n)
Einfiigen, Loschen in Mitte O(n) O(n)
Verschwendeter Speicher 0(1) O(n)

Take-home Message
» Verschiedene Datenstrukturen machen verschiedene Trade-offs

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 22 /32

B2. Arrays & Verkettete Listen

Einfligen am Anfang

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Verkettete Listen

23 /32

B2. Arrays & Verkettete Listen Verkettete Listen

Einfiigen am Ende

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 24 / 32

B2. Arrays & Verkettete Listen

Weitere Operationen

Einfach:

> Vom Anfang entfernen

Schwierig:

> Traversieren

einfiigen

entfernen

Einfach/Schwierig bezieht sich auf Aufwand und nicht
Implementation.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

» Vom Ende entfernen

» An beliebiger Position
» An beliebiger Position

» Element an beliebiger
Position lesen/schreiben

Verkettete Listen

25 / 32

B2. Arrays & Verkettete Listen

Doppelt verkettete Liste

Verkettete Listen

» Referenz nicht nur auf Nachfolger, sondern auch
vorhergehendes Element

» Macht Entfernen vom Ende giinstig.

. A tem1 | Jrem2 | .. o Itemn |~ end
first - next \ next \ next \ next |

4 — prev prev prev prev
en

last

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

B2. Arrays & Verkettete Listen

Implementation in Python

Zjupyter untitled ases
File Edit View Inset Cell Kemel Help # | Python [Root] O

B+ & B ¢ N EC Coue Y & Celloobar & @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

In 13]: $pylab inlim

Popul

om numpy and matplotl 1o
Ln 171 | plot o) w2
OuELYL: Lematplotlib. ines.Tine2D at 0x29d8be022e8>]

1000000

#0000

00000

400000

200000

0 W0 w0 W0 000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Verkettete Listen

26 / 32

27 / 32

B2. Arrays & Verkettete Listen Verkettete Listen

Rekursive Definition

Eine Liste L ist

» die leere Liste

» oder ein Element H (Head) gefolgt von einer Liste: H, L

Head

Liste

Head Liste

Head Liste
Head

Head | []

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

28 / 32

B2. Arrays & Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List (head : Item, tail List[Item]) # Komnstruktor

emptyList = List(None, None)

head 1 A head2 | + .. B
tail |~ tail |~ tail | -

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Verkettete Listen

29 / 32

B2. Arrays & Verkettete Listen

Verkettete Listen (rekursiv)

» Natiirliche, rekursive Implementation vieler Operationen
» Implementation folgt Datenstruktur

def printList(list):
if (list == emptyList):
return ""
else:

return str(list.head) + printList(list.tail)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Verkettete Listen

B2. Arrays & Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List (head : Item, tail List[Item]) # Komnstruktor

emptyList = List(None, None)

Vergleiche:

class Node[Item]:
item : Item
next : Node

Node (head : Item, tail Node[Item]) # Konstruktor

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Verkettete Listen

30 / 32

31 /32

B2. Arrays & Verkettete Listen

Implementation in Python

Zjupyter untitled ases

File Edit View Insert Cell Kemel Help # | Python [Root] O

B+ & B ¢ N EC Coue Y B Celloobar & @& O

Algorithmen und Datenstrukturen

Interaktive Experimente
Lo 13]: Spylab inline

Populating the interactive namespace from numpy and matplotlin

1n [7]: plot(linspace(0, 1000), (linspace(0,1000) **2))
Outl7l: l<matplotlib. linas.Tine2 at 0x29d8ba022e8>]
1000000
#0000
00000
400000
200000
%0 W0 w0 W0 000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Verkettete Listen

32

/ 32

	Arrays
	

	Verkettete Listen
	

