
Algorithmen und Datenstrukturen
B1. Heap und Heapsort - Eine informelle Einführung

Marcel Lüthi and Gabriele Röger

Universität Basel

31.03.2021



Datenstruktur Heap

Heap

Ein (binärer) min-Heap ist ein vollständiger binärer Baum, bei dem
gilt, dass der Wert in jedem Knoten kleiner gleich dem Wert seiner
beiden Kindern (sofern vorhanden) ist.



Aufbauen eines Heaps

Elemente: 7, 13, 5, 8, 1, 2



Entfernen des kleinsten Elements vom Heap



Beispiel: Sortieren mit Heaps (Ausblick)

Idee des Algorithmus:

Baue Heap aus unsortierter Liste

Solange Elemente im Heap sind

Entferne kleinstes Element (Wurzel)
Schreibe Element in (neue) Liste
Stelle Heapbedingung wieder her

Neue Liste enthält Elemente in sortierter Reihenfolge

Heapsort: Gleiche Idee, aber inplace.



Sortieren mit Heaps

Offene Fragen:

Wie schnell können wir Heap aus n unsortierten Elementen
aufbauen?

Antwort: Naiv: In O(n log2 n) Operationen. Trickreich: In O(n)

Wie schnell können wir Heapbedingung nach Entfernen
wiederherstellen?

Antwort: In O(log2 n) Operationen

Wie gross ist die gesamte Laufzeitkomplexität

Antwort: In O(n log2 n) Operationen

Komplexität verschoben von Algorithmus nach Datenstruktur



Sortieren mit Heaps

Offene Fragen:

Wie schnell können wir Heap aus n unsortierten Elementen
aufbauen?

Antwort: Naiv: In O(n log2 n) Operationen. Trickreich: In O(n)

Wie schnell können wir Heapbedingung nach Entfernen
wiederherstellen?

Antwort: In O(log2 n) Operationen

Wie gross ist die gesamte Laufzeitkomplexität

Antwort: In O(n log2 n) Operationen

Komplexität verschoben von Algorithmus nach Datenstruktur



Zusammenfassung

Algorithmen und Datenstrukturen arbeiten zusammen

(Teil der) Komplexität kann verschoben werden

Datenstrukturen können meist visualisiert/graphisch
verstanden werden

Oft gilt: Gute Datenstrukturen ⇒ Einfach(ere) Programme

Details von Heapsort folgen ...


