Algorithmen und Datenstrukturen
A12. Sortieren: Quicksort, Countingsort, Radixsort

Marcel Liithi and Gabriele Roger

Universitat Basel

24. Marz 2021

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021

1/

Algorithmen und Datenstrukturen
24. Marz 2021 — Al12. Sortieren: Quicksort, Countingsort, Radixsort

A12.1 Quicksort
A12.2 Heapsort
A12.3 Nicht vergleichsbasierte Verfahren

A12.4 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 2/27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

A12.1 Quicksort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 3/27

A12. Sortieren: Quicksort, Countingsort, Radixsort

Sortierverfahren

M. Liithi, G. Réger (Universitit Basel)

Nicht
vergleichsbasierte
Verfahren

—| Selectionsort

—| Insertionsort

—| Mergesort

Minimale

Uberblick und
Ausblick

Vergleichszahl

Algorithmen und Datenstrukturen

—{ Heap Sort

24. Mirz 2021

Quicksort

4 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Quicksort: Idee

» Wie Merge-Sort ein Divide-and-Conquer-Verfahren

» Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

» Hierfiir wird ein Element P gewahlt
(das sogenannte Pivotelement).

» Dann wird so umsortiert, dass P an die endgiiltige Position

kommt, vor P nur Elemente < P stehen, und hinten nur
Elemente > P.

<P |P > P

» Macht man das rekursiv fiir den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Marz 2021 5 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Quicksort: Algorithmus

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)
8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 6 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort

Wie wahlt man das Pivot-Element?

Fiir die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir kdnnen zum Bsp. folgende Strategien wahlen:
» Naiv: Nimm immer erstes Element

» Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

» Randomisiert: Wahle zufillig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021

7/

Quicksort

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Wie macht man die Umsortierung?

array

@ s Pivot ist an Pos 0.
Initialisiere i =lo 4 1, = hi

@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

@ o Falls i < j: Elemente tauschen, i++, j——
@ T i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

E@ i > j: noch Pivot an Pos j tauschen
@ e Fertig!

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Marz 2021 8 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort

Quicksort: Partitionierung

def partition(array, lo, hi):
pivot = array[lo]
i=10 +1
j = hi
while (True):
while i < hi and array[i] < pivot:
i+=1
while array[j] > pivot:
j-=1
if io>= §:
break

array[i], array[j]l = array[j]l, array[i]
i, j=di+1,3-1
array[lo], array[j]l = array[j], arrayl[lo]
return j

M. Liithi, G. Réger

(Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021

Quicksort

9 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Aufgabe (Slido)

Wie sieht das Array [6, 5, 7, 8, 3] nach einem Aufruf Lk
von partition fiir den gesamten Bereich
(von Position 0 bis 4) aus?

.

g

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 10 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort

Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
» O(log, n) rekursive Aufrufe
> jeweils hi-lo Schliisselvergleiche in Partitionierung

> auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlog n)

Worst case: Pivot-Element immer kleinstes oder grosstes Element

» insgesamt n-1 (nichttriviale) rekursive Aufrufe fiir Lange

nn—1,...,2.
> jeweils hi-lo Schliisselvergleiche in Partitionierung
— O(n?)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Marz 2021 11

Quicksort

27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Quicksort: Laufzeit Il

Average case:

» Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt

» O(log n) rekursive Aufrufe
> insgesamt O(nlog n)

> etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(nlog n)-Verfahren betrachtet.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 12 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort Heapsort

A12.2 Heapsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 13 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort

Sortierverfahren

M. Liithi, G. Réger (Universitit Basel)

Nicht
vergleichsbasierte
Verfahren

—| Selectionsort

—| Insertionsort

—| Mergesort

Minimale

Uberblick und
Ausblick

Vergleichszahl

—| Quick Sort

Algorithmen und Datenstrukturen

24. Mirz 2021

Heapsort

14 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort

Heapsort

» Heap: Datenstruktur, die das Finden und Entnehmen des
grossten Elements besonders effizient unterstiitzt
Finden: ©(1), Entnehmen: ©(log n)

» Grundidee analog zu Selectionsort: Setze sukzessive das
grosste Element an das Ende des unsortierten Bereichs.

» Kann den Heap direkt in der Eingabesequenz reprasentieren,
so dass Heapsort nur konstanten zusatzlichen Speicherplatz
bendtigt.

» Die Laufzeit von Heapsort ist leicht liberlinear.

» Wir besprechen die Details spater, wenn wir Heaps
genauer kennengelernt haben.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Marz 2021

Heapsort

15 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

A12.3 Nicht vergleichsbasierte
Verfahren

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 16 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Sortierverfahren

| Vergleichsbasierte
Verfahren

Radixsort

Uberblick und
Ausblick

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 17 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Countingsort: Idee

»Sortieren durch Zahlen*
» Annahme: Elemente sind aus Bereich 0,..., k — 1.

» Laufe einmal iiber die Eingabesequenz und z&hle dabei,
wie oft jedes Element vorkommt.

» Sei #i die Anzahl der Vorkommen von Element i.
> Iteriere i=0,...,k—1 und
schreibe jeweils #i-mal Element / in die Sequenz.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 18 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + j]l =i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
— Fiir festes k linear

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 19 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Sortierverfahren

| Vergleichsbasierte
Verfahren

Countingsort

Uberblick und
Ausblick

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 20 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Radixsort: Idee

., Sortieren durch Fachverteilen*

» Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
» Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

» Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

» Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.
» Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.
» usw. bis alle Stellen betrachtet wurden.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021

21/

A12. Sortieren: Quicksort, Countingsort, Radixsort

Radixsort: Beispiel

> Eingabe: 263, 983, 96, 462, 286
> Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

> Aufteilung nach vorletzter Stelle:

0 1 2 3 4 5 6 7 8
462 983
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96
> Aufteilung nach drittletzter Stelle:

0 1 2 3 4 5 6 7 8
096 263 462
286

Aufsammeln ergibt: 96, 263, 286, 462, 983

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

9
96

983

24. Marz 2021

Nicht vergleichsbasierte Verfahren

22 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Jupyter-Notebook

L
_
Jupyter
o

Jupyter-Notebook: radix_sort.ipynb

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 23 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort

Radixsort: Algorithmus (fiir beliebige Basis)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

def sort(array, base=10):

if not array: # array is empty
return
iteration = 0
max_val = max(array) # identify largest element
while base ** iteration <= max_val:
buckets = [[] for num in range(base)]
for elem in array:
digit = (elem // (base ** iteration)) 7, base
buckets[digit] .append(elem)
pos = 0
for bucket in buckets:
for elem in bucket:
array[pos] = elem
pos += 1
iteration += 1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021

Nicht vergleichsbasierte Verfahren

24 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Radixsort: Laufzeit

» m: Maximale Anzahl Stellen in Reprisentation
mit gegebener Basis b.

» n: Lange der Eingabesequenz
» Laufzeit in O(m - (n+ b))

Fir festes m und b hat Radixsort lineare Laufzeit.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 25 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort Zusammenfassung

A12.4 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 26 /27

A12. Sortieren: Quicksort, Countingsort, Radixsort Zusammenfassung

Zusammenfassung

» Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

» Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

» Sie machen jedoch zusatzliche Einschrankungen
an die verwendeten Schliissel.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 24. Mirz 2021 27 /27

	Quicksort
	

	Heapsort
	

	Nicht vergleichsbasierte Verfahren
	

	Zusammenfassung
	

