
Algorithmen und Datenstrukturen
A12. Sortieren: Quicksort, Countingsort, Radixsort

Marcel Lüthi and Gabriele Röger

Universität Basel

24. März 2021

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 1 / 27

Algorithmen und Datenstrukturen
24. März 2021 — A12. Sortieren: Quicksort, Countingsort, Radixsort

A12.1 Quicksort

A12.2 Heapsort

A12.3 Nicht vergleichsbasierte Verfahren

A12.4 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 2 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

A12.1 Quicksort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 3 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 4 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Quicksort: Idee

I Wie Merge-Sort ein Divide-and-Conquer-Verfahren

I Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

I Hierfür wird ein Element P gewählt
(das sogenannte Pivotelement).

I Dann wird so umsortiert, dass P an die endgültige Position
kommt, vor P nur Elemente ≤ P stehen, und hinten nur
Elemente ≥ P.

P≤ P ≥ P

I Macht man das rekursiv für den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 5 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Quicksort: Algorithmus

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)

8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 6 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Wie wählt man das Pivot-Element?

Für die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir können zum Bsp. folgende Strategien wählen:

I Naiv: Nimm immer erstes Element

I Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

I Randomisiert: Wähle zufällig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 7 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Wie macht man die Umsortierung?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot ist an Pos 0.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7

i

4 2 3

j

6
Falls i < j : Elemente tauschen, i++, j−−

. . . 5 3 4

i

2

j

7 6 i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7

i

6 Fertig!

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 8 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Quicksort: Partitionierung

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i = lo + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i += 1

8 while array[j] > pivot:

9 j -= 1

10 if i >= j:

11 break

12

13 array[i], array[j] = array[j], array[i]

14 i, j = i + 1, j - 1

15 array[lo], array[j] = array[j], array[lo]

16 return j

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 9 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Aufgabe (Slido)

Wie sieht das Array [6, 5, 7, 8, 3] nach einem Aufruf
von partition für den gesamten Bereich
(von Position 0 bis 4) aus?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 10 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Quicksort: Laufzeit I

Best case: Pivot-Element teilt in gleich grosse Bereiche

I O(log2 n) rekursive Aufrufe

I jeweils hi-lo Schlüsselvergleiche in Partitionierung

I auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

→ O(n log n)

Worst case: Pivot-Element immer kleinstes oder grösstes Element

I insgesamt n-1 (nichttriviale) rekursive Aufrufe für Länge
n, n − 1, . . . , 2.

I jeweils hi-lo Schlüsselvergleiche in Partitionierung

→ Θ(n2)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 11 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Quicksort

Quicksort: Laufzeit II

Average case:

I Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufällig gewählt

I O(log n) rekursive Aufrufe

I insgesamt O(n log n)

I etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(n log n)-Verfahren betrachtet.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 12 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Heapsort

A12.2 Heapsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 13 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Heapsort

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 14 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Heapsort

Heapsort

I Heap: Datenstruktur, die das Finden und Entnehmen des
grössten Elements besonders effizient unterstützt
Finden: Θ(1), Entnehmen: Θ(log n)

I Grundidee analog zu Selectionsort: Setze sukzessive das
grösste Element an das Ende des unsortierten Bereichs.

I Kann den Heap direkt in der Eingabesequenz repräsentieren,
so dass Heapsort nur konstanten zusätzlichen Speicherplatz
benötigt.

I Die Laufzeit von Heapsort ist leicht überlinear.

I Wir besprechen die Details später, wenn wir Heaps
genauer kennengelernt haben.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 15 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

A12.3 Nicht vergleichsbasierte
Verfahren

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 16 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Nicht
vergleichsbasierte

Verfahren

Countingsort

Radixsort

Überblick und
Ausblick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 17 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Countingsort: Idee

”
Sortieren durch Zählen“

I Annahme: Elemente sind aus Bereich 0, . . . , k − 1.

I Laufe einmal über die Eingabesequenz und zähle dabei,
wie oft jedes Element vorkommt.

I Sei #i die Anzahl der Vorkommen von Element i .

I Iteriere i = 0, . . . , k − 1 und
schreibe jeweils #i-mal Element i in die Sequenz.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 18 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros

3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):

10 array[pos + j] = i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grösse der Eingabesequenz)
Laufzeit: → Für festes k linear

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 19 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Nicht
vergleichsbasierte

Verfahren

Countingsort

Radixsort

Überblick und
Ausblick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 20 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Radixsort: Idee

”
Sortieren durch Fachverteilen“

I Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

I Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

I Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

I Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

I Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

I usw. bis alle Stellen betrachtet wurden.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 21 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Radixsort: Beispiel

I Eingabe: 263, 983, 96, 462, 286
I Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

I Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

I Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983
M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 22 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Jupyter-Notebook

Jupyter-Notebook: radix sort.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 23 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Radixsort: Algorithmus (für beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element

6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) % base

10 buckets[digit].append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 24 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Nicht vergleichsbasierte Verfahren

Radixsort: Laufzeit

I m: Maximale Anzahl Stellen in Repräsentation
mit gegebener Basis b.

I n: Länge der Eingabesequenz

I Laufzeit in O(m · (n + b))

Für festes m und b hat Radixsort lineare Laufzeit.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 25 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Zusammenfassung

A12.4 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 26 / 27

A12. Sortieren: Quicksort, Countingsort, Radixsort Zusammenfassung

Zusammenfassung

I Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

I Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

I Sie machen jedoch zusätzliche Einschränkungen
an die verwendeten Schlüssel.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 24. März 2021 27 / 27

	Quicksort
	

	Heapsort
	

	Nicht vergleichsbasierte Verfahren
	

	Zusammenfassung
	

