Algorithmen und Datenstrukturen
All. Sortieren: Untere Schranke

Marcel Liithi and Gabriele Roger

Universitat Basel

18. Mérz 2020

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

18. Marz 2020

1/

Algorithmen und Datenstrukturen
18. Marz 2020 — A11l. Sortieren: Untere Schranke

A11.1 Untere Schranke an erforderliche
Vergleichsoperationen

A11.2 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 2 /15

A11. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

A11.1 Untere Schranke an
erforderliche Vergleichsoperationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 3 /15

A11. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

Inhalt dieser Veranstaltung

| Komplexitts-
analyse Nicht

| Fundamentale | | | Verg\|/eIthshbaS|erte
_ Datenstrukturen erfahren

[Suchen | || Uberblick und

Ausblick
—{ Graphen |
—| Strings |

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 4 /15

A11. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

Sortierverfahren

—| Selectionsort |
—| Insertionsort |
—| Mergesort |
Nicht
_ vergleichsbasierte
Verfahren

—| Quick Sort |

- —{ Heap Sort |

Uberblick und

Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 5 /15

All. Sortieren: Untere Schranke

Fragestellung

> Mergesort hatte bisher mit O(nlog, n) die beste
(Worstcase-)Laufzeit.

» Geht es noch besser?

> Wir zeigen: Nicht mit vergleichsbasierten Verfahren!

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

18. Marz 2020

6/

Untere Schranke an erforderliche Vergleichsoperationen

All. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

Vorgehen

» Schwierigkeit: Wir kdnnen nicht einen bestimmten
Algorithmus analysieren, sondern miissen eine Aussage iiber
alle moglichen Verfahren treffen.

» Vergleichsbasierte Verfahren kénnen die Eingabe nur anhand
von Schliisselvergleichen analysieren.

> Sie miissen jede Eingabe korrekt sortieren.

» Daraus konnen wir eine untere Schranke an die Anzahl der
Schliisselvergleiche im worst-case ableiten.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 7/ 15

All. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

Abstraktes Verhalten als Baum

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.
» Verhalten hingt nur vom Ergebnis der Schliisselvergleiche ab.

> Bei jedem Schliisselvergleich gibt es zwei Moglichkeiten,
wie der Algorithmus weiter macht.

» Wir kdnnen das graphisch als Baum darstellen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 8 /15

All. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

Crashkurs Binarbaume

» Bindrbaum: jeder Knoten hat hdchstens zwei Nachfolger
» Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
» Der Knoten ganz oben ist die Wurzel.

» Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Bindarbaum
mit k Blattern ist mindestens log, k.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 9/15

A11. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

Aufgabe (Slido)

Was ist die maximale Tiefe
eines Blattes in diesem Baum?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Mirz 2020 10 / 15

All. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

Ergebnis als Permutation

Was muss der Algorithmus kdnnen?
» Annahme: alle Elemente unterschiedlich
» Muss alle Eingaben der Grésse n korrekt sortieren.

> Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

» Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: posO — pos2, posl +— posl, pos2 +— posQ

» Da alle méglichen Eingaben der Grdsse n korrekt gelsst
werden miissen, muss der Algorithmus alle n! moglichen
Permutationen erzeugen konnen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 11 /15

All. Sortieren: Untere Schranke Untere Schranke an erforderliche Vergleichsoperationen

Untere Schranke

> Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

» Bei Eingabegrosse n muss der Baum also
mindestens n! Blatter haben.

» Die maximale Tiefe des entsprechenden Baumes
ist demnach > log,(n!).

» Es gibt also eine Eingabe der Grésse n mit
> log,(n!) Schliisselvergleichen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2020 12 /15

A11. Sortieren: Untere Schranke

Untere Schranke: Abschatzung

Untere Schranke an erforderliche Vergleichsoperationen

Abschéatzung von log,(n!)
> Es gilt n! > (g)z
4/=1.2-3 -4 > 22

> logy(n!) > /ogz((g)g) = 3logx(3)
= 2(log n + log, %) = 3(logy n — log, 2)
(logyn—1)

2
n
2

Theorem

Jeder vergleichsbasierte Sortieralgorithmus benétigt Q(nlog n) viele
Schliisselvergleiche. Damit liegt auch die Laufzeit in Q(nlog n).

Mergesort ist asymptotisch optimal.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Mirz 2020 13 /15

A11. Sortieren: Untere Schranke Zusammenfassung

Al11.2 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 18. Mirz 2020 14 / 15

A11. Sortieren: Untere Schranke Zusammenfassung

Zusammenfassung

» Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht tUberlineare Laufzeit.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Mirz 2020 15 / 15

	Untere Schranke an erforderliche Vergleichsoperationen
	

	Zusammenfassung
	

