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Fragestellung

> Mergesort hatte bisher mit O(nlog, n) die beste
(Worstcase-)Laufzeit.

» Geht es noch besser?

> Wir zeigen: Nicht mit vergleichsbasierten Verfahren!
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Vorgehen

» Schwierigkeit: Wir kdnnen nicht einen bestimmten
Algorithmus analysieren, sondern miissen eine Aussage iiber
alle moglichen Verfahren treffen.

» Vergleichsbasierte Verfahren kénnen die Eingabe nur anhand
von Schliisselvergleichen analysieren.

> Sie miissen jede Eingabe korrekt sortieren.

» Daraus konnen wir eine untere Schranke an die Anzahl der
Schliisselvergleiche im worst-case ableiten.
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Abstraktes Verhalten als Baum

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.
» Verhalten hingt nur vom Ergebnis der Schliisselvergleiche ab.

> Bei jedem Schliisselvergleich gibt es zwei Moglichkeiten,
wie der Algorithmus weiter macht.

» Wir kdnnen das graphisch als Baum darstellen.
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Crashkurs Binarbaume

» Bindrbaum: jeder Knoten hat hdchstens zwei Nachfolger
» Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
» Der Knoten ganz oben ist die Wurzel.

» Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Bindarbaum
mit k Blattern ist mindestens log, k.
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Aufgabe (Slido)

Was ist die maximale Tiefe
eines Blattes in diesem Baum?
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Ergebnis als Permutation

Was muss der Algorithmus kdnnen?
» Annahme: alle Elemente unterschiedlich
» Muss alle Eingaben der Grésse n korrekt sortieren.

> Wir konnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

» Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: posO — pos2, posl +— posl, pos2 +— posQ

» Da alle méglichen Eingaben der Grdsse n korrekt gelsst
werden miissen, muss der Algorithmus alle n! moglichen
Permutationen erzeugen konnen.
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Untere Schranke

> Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

» Bei Eingabegrosse n muss der Baum also
mindestens n! Blatter haben.

» Die maximale Tiefe des entsprechenden Baumes
ist demnach > log,(n!).

» Es gibt also eine Eingabe der Grésse n mit
> log,(n!) Schliisselvergleichen.
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Untere Schranke: Abschatzung

Untere Schranke an erforderliche Vergleichsoperationen

Abschéatzung von log,(n!)
> Es gilt n! > (g)z
4/=1.2-3 -4 > 22

> logy(n!) > /ogz((g)g) = 3logx(3)
= 2(log n + log, %) = 3(logy n — log, 2)
(logyn—1)

2
n
2

Theorem

Jeder vergleichsbasierte Sortieralgorithmus benétigt Q(nlog n) viele
Schliisselvergleiche. Damit liegt auch die Laufzeit in Q(nlog n).

Mergesort ist asymptotisch optimal.
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Zusammenfassung

» Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht tUberlineare Laufzeit.
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