Algorithmen und Datenstrukturen
A10. Laufzeitanalyse: Anwendung

Marcel Liithi and Gabriele Roger
Universitat Basel

18. Marz 2021

Inhalt dieser Veranstaltung

—| Sortieren |

| Fundamentale
Datenstrukturen

_——| Suchen |

—‘ Graphen |
—{ Strings |

|| Weiterfiihrende
Themen

Kurze Wiederholung

@00000

Kurze Wiederholung

Kurze Wiederholung
0e0000

Landau-Symbole

m ,f wachst genauso schnell wie g*

O(g)={f|3Ic>03c">03ng>0Vn>ng:
c-g(n) <f(n)<c-g(n)}

Kurze Wiederholung
0e0000

Landau-Symbole

m ,f wachst genauso schnell wie g*

O(g)={f|3Ic>03c">03ng>0Vn>ng:
c-g(n) <f(n)<c-g(n)}

m ,f wachst nicht wesentlich schneller als g*

O(g)={f|3c>03ng >0Vn>ng:f(n)<c-g(n)}

Kurze Wiederholung
0e0000

Landau-Symbole

m ,f wachst genauso schnell wie g*

O(g)={f|3Ic>03c">03ng>0Vn>ng:
c-g(n) <f(n)<c-g(n)}

m ,f wachst nicht wesentlich schneller als g*
O(g)={f|3c>03ng >0Vn>ng:f(n)<c-g(n)}
m ,,f wachst nicht wesentlich langsamer als g

Qg)={f|3c>03ng>0Vn>ng:c-g(n) <f(n)}

Kurze Wiederholung
[e]e] lele]e]

Landau-Symbol Theta: lllustration

feo(g)

100

Kurze Wiederholung Any g Zusammenfass

000e00

Interessante Funktionsklassen

In aufsteigender Ordnung (abgesehen von allgemeinen n*):

g Wachstum
1 konstant
logn logarithmisch
n linear
nlogn leicht lberlinear
n?> quadratisch

n® kubisch
polynomiell (Konstante k)
2" exponentiell

Kurze Wiederholung An Zusammenfassung

0000e0

Zusammenhange

Es gilt:

m O(1) € O(logn) € O(n) C O(nlogn) C O(n*) C O(2")
(fir k > 2)

Kurze Wiederholung

0000e0

Zusammenhange

Es gilt:
m O(1) € O(logn) € O(n) C O(nlogn) C O(n*) C O(2")
(fir k > 2)
= O(n*) C O(nk) fiir ky < ko
z.B. O(n?) C O(n®)

Kurze Wiederholung
00000e

Rechenregeln

m Produkt
fi € O(g1) und f, € O(g2) = fifa € O(g1842)

Kurze Wiederholung An Zusammenfassung

O0000e

Rechenregeln

m Produkt
fi € O(g1) und f, € O(g2) = ffa € O(g142)
m Summe

fi€O(gi)und L€ O(g2) = A+ hHh e O(g+g)

Kurze Wiederholung Any Zusammenfassung

O0000e

Rechenregeln

m Produkt

fi € O(gl) und f» € O(gg) = hhHh € O(glgz)
m Summe

fi € O(g1) und o € O(g2) = i+ f € O(g1 + &)
m Multiplikation mit Konstante

k>0und f € O(g) = kf € O(g)

k> 0= O(kg) = O(g)

Anwendung
€00000000

Anwendung

Anwendung
0®0000000

Schnelle O-Analyse fiir haufige Code-Konstrukte |

m konstante Operation

| var = 4| O(1) |

“x‘\» lerholun Anwendung PATE v,xH'm'n—,Hf,A:-‘;IHl:'

0@0000000

Schnelle O-Analyse fiir haufige Code-Konstrukte |

m konstante Operation

| var = 4| O(1) |

m Sequenz konstanter Operationen

varl = 4 0(1)
4 0(1)

var2

0(123-1) = 0(1)

var123 = 4 | O(1)

Anwendung
00@000000

Schnelle O-Analyse fiir haufige Code-Konstrukte Il

m Schleife
for i in range(n): | O(n)
res += 1 * m 0(1)

O(n-1) = O(n)

Anwendung
00@000000

Schnelle O-Analyse fiir haufige Code-Konstrukte Il

m Schleife
for i in range(n): | O(n) B
res += i * m O(1) O(n-1) = O(n)
for i in range(n): O(n) | O(n)
for j in range(i): O(n) o(n) 0(n?)
res += i x (m - j) | O(1)

i hdngt von n ab

Anwendung
000®00000

Schnelle O-Analyse fiir hdufige Code-Konstrukte |lI

m if-then-else

if var < bound: 0o(1) 0O(1)
res += var 0(1) 0(1)
olse: O(1 + max{1, n})

= 0(n)

for i in range(n): | O(n) | O(n-1)
res += i * n O(1) | =0(n)

ederholung Anwendung Zusammenf.

[e]e]e] lelele]e]e]

Schnelle O-Analyse fiir haufige Code-Konstrukte Il

m if-then-else

if var < bound: 0o(1) 0O(1)
res += var 0(1) 0(1) O(1 + max{1, n})
else: — 0(n) ’
for i in range(n): | O(n) | O(n-1) o
res += i * n O(1) | =0(n)

Achtung: Kann zu unnétig hoher Abschatzung fiihren,
wenn teurer Fall nur fiir kleine n auftritt
(durch Konstante begrenzt).

Anwendung
0000@0000

Beispiel: Worst Case fiir Insertionsort

1 def insertion_sort(array):
2 n = len(array)

3 for i in range(l, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # 7 =14, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

Anwendung
0000@0000

Beispiel: Worst Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # 7 =14, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

m Worst case: break-Fall tritt nie ein.

Anwendung
0000@0000

Beispiel: Worst Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # 7 =14, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

m Worst case: break-Fall tritt nie ein.
m O(L+n-n-1)=0(n?)

Anwendung
0000@0000

Beispiel: Worst Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # ¢ =1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # 7 =14, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

m Worst case: break-Fall tritt nie ein.
m O(L+n-n-1)=0(n?)
m Uberschitzt?
Nein, beide Schleifen haben jeweils Q(n) Durchlaufe.

Anwendung
000008000

Beispiel: Best Case fiir Insertionsort

1 def insertion_sort(array):
2 n = len(array)

3 for i in range(l, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # 7 =14, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

Anwendung
000008000

Beispiel: Best Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # 7 =14, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

m Best case: break jeweils direkt bei j =/

Anwendung
000008000

Beispiel: Best Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # 7 =14, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

m Best case: break jeweils direkt bei j =/
m O(1+n-1-1)=0(n)

Anwendung
000008000

Beispiel: Best Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # ¢ =1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # 7 =14, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

m Best case: break jeweils direkt bei j =/
m O(1+n-1-1)=0(n)
m Uberschitzt?
Nein, die dussere Schleifen hat Q(n) Durchlaufe.

Anwendung Zusammenfas:

000000e00

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhangigkeit von n € N in ©-Notation
an und begriinden Sie Ihre Antwort kurz (1-2 Satze).

1 int result = O;
2 if (n > 23) {

3 return result;

a1

5 for (int i = 0; i < n; i++) {

6 for (int j = 0; j < mn; j++) {
7 result += j;

8 +

9 F

10 return result;

Ku

Viederholung Anwendung Zusammenfass
000000080 o]

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhangigkeit von n € N in ©-Notation
an und begriinden Sie lhre Antwort mit der genauen Anzahl der
Ausfithrungen der Anweisung in Zeile 4 (in Abhangigkeit von n).

1 int result = 0;

2 for (dnt i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
4 result += j;

5 }

w

Jetzt: nur ©-Notation

derholung Anwendung Zusammenfassung

00000000 e

Warum interessiert uns das alles?

m Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

Anwendung
00000000@

Warum interessiert uns das alles?

m Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!

m Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

Zusammenfas:

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

Anwendung Zusammenfas:

00000000 e

Warum interessiert uns das alles?

m Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!

m Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

m mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

erholung Anwendung Zusammenfas

00000000 e

Warum interessiert uns das alles?

m Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!

m Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

m mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
m vmtl. schlechte Library zum Parsen

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

erholung Anwendung Zusammenfas

00000000 e

Warum interessiert uns das alles?

m Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!

m Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

m mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
m vmtl. schlechte Library zum Parsen
m ungeeignete Datenstruktur zum Testen auf Duplikate

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

erholung Anwendung Zusammenfassung

00000000 e

Warum interessiert uns das alles?

m Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!
m Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten
m mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
m vmtl. schlechte Library zum Parsen
m ungeeignete Datenstruktur zum Testen auf Duplikate
m nach Fix: 70% weniger Ladezeit

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

erholung Anwendung Zusammenfas

00000000 e

Warum interessiert uns das alles?

m Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!

m Beispiel: GTA online hatte viele Jahre eine Ladezeit von

mehreren Minuten

m mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!

vmtl. schlechte Library zum Parsen
ungeeignete Datenstruktur zum Testen auf Duplikate
nach Fix: 70% weniger Ladezeit
https://nee.1v/2021/02/28/
How-I-cut-GTA-Online-loading-times-by-70/index.
html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

Zusammenfassung

Zusammenfassung

oe

Zusammenfassung

m In der Praxis konnen wir mit einfachen “Kochrezepten” recht
schnell einen Eindruck von der Laufzeit eines Verfahrens
bekommen.

m Insertionsort hat

m im besten Fall Laufzeit ©(n)
m im schlechtesten Fall Laufzeit ©(n?)

	Kurze Wiederholung
	

	Anwendung
	

	Zusammenfassung
	

