
Algorithmen und Datenstrukturen
A10. Laufzeitanalyse: Anwendung

Marcel Lüthi and Gabriele Röger

Universität Basel

18. März 2021



Kurze Wiederholung Anwendung Zusammenfassung

Inhalt dieser Veranstaltung

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Weiterführende
Themen



Kurze Wiederholung Anwendung Zusammenfassung

Kurze Wiederholung



Kurze Wiederholung Anwendung Zusammenfassung

Landau-Symbole

”
f wächst genauso schnell wie g“

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}



Kurze Wiederholung Anwendung Zusammenfassung

Landau-Symbole

”
f wächst genauso schnell wie g“

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}



Kurze Wiederholung Anwendung Zusammenfassung

Landau-Symbole

”
f wächst genauso schnell wie g“

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}



Kurze Wiederholung Anwendung Zusammenfassung

Landau-Symbol Theta: Illustration

f ∈ Θ(g)



Kurze Wiederholung Anwendung Zusammenfassung

Interessante Funktionsklassen

In aufsteigender Ordnung (abgesehen von allgemeinen nk):

g Wachstum

1 konstant
log n logarithmisch

n linear
n log n leicht überlinear

n2 quadratisch
n3 kubisch
nk polynomiell (Konstante k)
2n exponentiell



Kurze Wiederholung Anwendung Zusammenfassung

Zusammenhänge

Es gilt:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(für k ≥ 2)

O(nk1) ⊂ O(nk2) für k1 < k2
z.B. O(n2) ⊂ O(n3)



Kurze Wiederholung Anwendung Zusammenfassung

Zusammenhänge

Es gilt:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(für k ≥ 2)

O(nk1) ⊂ O(nk2) für k1 < k2
z.B. O(n2) ⊂ O(n3)



Kurze Wiederholung Anwendung Zusammenfassung

Rechenregeln

Produkt
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Summe
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplikation mit Konstante
k > 0 und f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Kurze Wiederholung Anwendung Zusammenfassung

Rechenregeln

Produkt
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Summe
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplikation mit Konstante
k > 0 und f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Kurze Wiederholung Anwendung Zusammenfassung

Rechenregeln

Produkt
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

Summe
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

Multiplikation mit Konstante
k > 0 und f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)



Kurze Wiederholung Anwendung Zusammenfassung

Anwendung



Kurze Wiederholung Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte I

konstante Operation

var = 4 O(1)

Sequenz konstanter Operationen

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)



Kurze Wiederholung Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte I

konstante Operation

var = 4 O(1)

Sequenz konstanter Operationen

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)



Kurze Wiederholung Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte II

Schleife

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i hängt von n ab



Kurze Wiederholung Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte II

Schleife

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i hängt von n ab



Kurze Wiederholung Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte III

if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Achtung: Kann zu unnötig hoher Abschätzung führen,
Achtung: wenn teurer Fall nur für kleine n auftritt
Achtung: (durch Konstante begrenzt).



Kurze Wiederholung Anwendung Zusammenfassung

Schnelle O-Analyse für häufige Code-Konstrukte III

if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Achtung: Kann zu unnötig hoher Abschätzung führen,
Achtung: wenn teurer Fall nur für kleine n auftritt
Achtung: (durch Konstante begrenzt).



Kurze Wiederholung Anwendung Zusammenfassung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break-Fall tritt nie ein.

O(1 + n · n · 1) = O(n2)

Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.



Kurze Wiederholung Anwendung Zusammenfassung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break-Fall tritt nie ein.

O(1 + n · n · 1) = O(n2)

Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.



Kurze Wiederholung Anwendung Zusammenfassung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break-Fall tritt nie ein.

O(1 + n · n · 1) = O(n2)

Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.



Kurze Wiederholung Anwendung Zusammenfassung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Worst case: break-Fall tritt nie ein.

O(1 + n · n · 1) = O(n2)

Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.



Kurze Wiederholung Anwendung Zusammenfassung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break jeweils direkt bei j = i

O(1 + n · 1 · 1) = O(n)

Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.



Kurze Wiederholung Anwendung Zusammenfassung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break jeweils direkt bei j = i

O(1 + n · 1 · 1) = O(n)

Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.



Kurze Wiederholung Anwendung Zusammenfassung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break jeweils direkt bei j = i

O(1 + n · 1 · 1) = O(n)

Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.



Kurze Wiederholung Anwendung Zusammenfassung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

Best case: break jeweils direkt bei j = i

O(1 + n · 1 · 1) = O(n)

Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.



Kurze Wiederholung Anwendung Zusammenfassung

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhängigkeit von n ∈ N in Θ-Notation
an und begründen Sie Ihre Antwort kurz (1-2 Sätze).

1 int result = 0;

2 if (n > 23) {

3 return result;

4 }

5 for (int i = 0; i < n; i++) {

6 for (int j = 0; j < n; j++) {

7 result += j;

8 }

9 }

10 return result;



Kurze Wiederholung Anwendung Zusammenfassung

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhängigkeit von n ∈ N in Θ-Notation
an und begründen Sie Ihre Antwort mit der genauen Anzahl der
Ausführungen der Anweisung in Zeile 4 (in Abhängigkeit von n).

1 int result = 0;

2 for (int i = 0; i < n; i++) {

3 for (int j = i; j < n; j++) {

4 result += j;

5 }

6 }

Jetzt: nur Θ-Notation



Kurze Wiederholung Anwendung Zusammenfassung

Warum interessiert uns das alles?

Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexität zurückschlagen!

Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
vmtl. schlechte Library zum Parsen
ungeeignete Datenstruktur zum Testen auf Duplikate
nach Fix: 70% weniger Ladezeit
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Kurze Wiederholung Anwendung Zusammenfassung

Warum interessiert uns das alles?

Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexität zurückschlagen!

Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
vmtl. schlechte Library zum Parsen
ungeeignete Datenstruktur zum Testen auf Duplikate
nach Fix: 70% weniger Ladezeit
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Kurze Wiederholung Anwendung Zusammenfassung

Warum interessiert uns das alles?

Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexität zurückschlagen!

Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
vmtl. schlechte Library zum Parsen
ungeeignete Datenstruktur zum Testen auf Duplikate
nach Fix: 70% weniger Ladezeit
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Kurze Wiederholung Anwendung Zusammenfassung

Warum interessiert uns das alles?

Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexität zurückschlagen!

Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
vmtl. schlechte Library zum Parsen
ungeeignete Datenstruktur zum Testen auf Duplikate
nach Fix: 70% weniger Ladezeit
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Kurze Wiederholung Anwendung Zusammenfassung

Warum interessiert uns das alles?

Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexität zurückschlagen!

Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
vmtl. schlechte Library zum Parsen
ungeeignete Datenstruktur zum Testen auf Duplikate
nach Fix: 70% weniger Ladezeit
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Kurze Wiederholung Anwendung Zusammenfassung

Warum interessiert uns das alles?

Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexität zurückschlagen!

Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
vmtl. schlechte Library zum Parsen
ungeeignete Datenstruktur zum Testen auf Duplikate
nach Fix: 70% weniger Ladezeit
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Kurze Wiederholung Anwendung Zusammenfassung

Warum interessiert uns das alles?

Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexität zurückschlagen!

Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
vmtl. schlechte Library zum Parsen
ungeeignete Datenstruktur zum Testen auf Duplikate
nach Fix: 70% weniger Ladezeit
https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


Kurze Wiederholung Anwendung Zusammenfassung

Zusammenfassung



Kurze Wiederholung Anwendung Zusammenfassung

Zusammenfassung

In der Praxis können wir mit einfachen “Kochrezepten” recht
schnell einen Eindruck von der Laufzeit eines Verfahrens
bekommen.

Insertionsort hat

im besten Fall Laufzeit Θ(n)
im schlechtesten Fall Laufzeit Θ(n2)


	Kurze Wiederholung
	

	Anwendung
	

	Zusammenfassung
	


