Algorithmen und Datenstrukturen
Al0. Laufzeitanalyse: Anwendung

Marcel Liithi and Gabriele Roger
Universitat Basel

18. Marz 2021

Algorithmen und Datenstrukturen
18. Mérz 2021 — A10. Laufzeitanalyse: Anwendung

A10.1 Kurze Wiederholung

A10.2 Anwendung

A10.3 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Méarz 2021 2 /20

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Méarz 2021 1/20
Inhalt dieser Veranstaltung
—| Sortieren |
| Fundamentale
Datenstrukturen
[CABDTT—{ Suchen |
% Graphen |
% Strings |
| Weiterfiihrende
Themen
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 3 /20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

A10.1 Kurze Wiederholung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 4 /20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Landau-Symbole

» . f wachst genauso schnell wie g*

O(g)={f|3c>03c' >03ng >0Vn>ng:
c-g(n) < f(n)<cg(n)}

» f wachst nicht wesentlich schneller als g*
O(g)={f|3c>03ng >0Vn>ng:f(n)<c-g(n)}
» . f wachst nicht wesentlich langsamer als g*

Qg)={f|3c>03ng>0Vn>ng:c-g(n) <f(n)}

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 5 /20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Landau-Symbol Theta: lllustration

fe0(g)

100

80

40

20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Interessante Funktionsklassen

In aufsteigender Ordnung (abgesehen von allgemeinen n¥):

g Wachstum
1 konstant
logn logarithmisch
n linear
nlogn leicht iiberlinear

n?> quadratisch

n® kubisch

n* polynomiell (Konstante k)

2" exponentiell

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 7 /20

00 26 ng 4b 6‘0 BIO 100
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 6 /20
A10. Laufzeitanalyse: Anwendung Kurze Wiederholung
Zusammenhange
Es gilt:
> O(1) C O(logn) C O(n) C O(nlogn) C O(n¥) C O(2")
(fir k > 2)

> O(nkl) C O(nk2) fiir k1 < ko
2.B. O() C O(n®)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Mirz 2021 8 /20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Rechenregeln

» Produkt

fi € O(g1) und f; € O(g2) = ffr € O(g182)
» Summe

fi € O(g1) und f, € O(g2) = L+ € O(g1 + &)
» Multiplikation mit Konstante

k>0und f € O(g) = kf € O(g)

k>0 = O(kg) = O(g)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 9 /20

A10. Laufzeitanalyse: Anwendung Anwendung

A10.2 Anwendung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 10 / 20

A10. Laufzeitanalyse: Anwendung Anwendung

Schnelle O-Analyse fiir haufige Code-Konstrukte |

> konstante Operation

| var = 4| O(1) |

» Sequenz konstanter Operationen

varl = 4 0o(1)
var2 = 4 0o(1)

0(123-1) = O(1)

var123 = 4 | O(1)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Mirz 2021 11/20

A10. Laufzeitanalyse: Anwendung Anwendung

Schnelle O-Analyse fiir haufige Code-Konstrukte Il

» Schleife
for i in range(n): | O(n) _
res += i * m Oo(1) O(n-1) = O(n)
for i in range(n): O(n) | O(n)
for j in range(i): O(n) o(n) 0(n?)
res += i * (m - j) | O(1)
i hangt von n ab
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Mirz 2021 12 /20

A10. Laufzeitanalyse: Anwendung

Schnelle O-Analyse fiir hdaufige Code-Konstrukte Il

> if-then-else
if var < bound: 0(1) 0(1)
res += var 0(1) 0(1) O(1 + max{1, n})
else: — 0(n) ’
for i in range(m): | O(n) | O(n-1) | n
res += i * n O(1) | =0(n)

Achtung: Kann zu unnétig hoher Abschatzung fiihren,
wenn teurer Fall nur fiir kleine n auftritt
(durch Konstante begrenzt).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021

13/

Anwendung

A10. Laufzeitanalyse: Anwendung

Beispiel: Worst Case fiir Insertionsort

Anwendung

1 def insertion_sort(array):
2 n = len(array)

3 for i in range(l, n): # < =1, ..., n - 1

4 # move arrayl[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j =1, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-1], array[j]
9 else:

10 break

» Worst case: break-Fall tritt nie ein.
> O(1+n-n-1)= 0(n?)
» Uberschitzt?
Nein, beide Schleifen haben jeweils (n) Durchlaufe.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021

14 /

20

A10. Laufzeitanalyse: Anwendung

Beispiel: Best Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it %s

5 # at the correct position.

6 for j in range(i, 0, -1): # j =1, ..., 1

7 if array[j]l < array[j-1]:

8 array[jl, array[j-1] = array[j-1], array[j]
9 else:

10 break

> Best case: break jeweils direkt bei j =i
» O(14+n-1-1)= 0(n)
» Uberschitzt?
Nein, die dussere Schleifen hat Q(n) Durchlaufe.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021

15

Anwendung

/ 20

A10. Laufzeitanalyse: Anwendung

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhangigkeit von n € N in ©-Notation
an und begriinden Sie lhre Antwort kurz (1-2 Satze).

1 int result = O;
2 if (n > 23) {

3 return result;

4+ ¥

5 for (dint i = 0; i < mn; i++) {

6 for (int j = 0; j < n; j++) {
7 result += j;

8 }

o

10 Treturn result;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021

Anwendung

16

/ 20

A10. Laufzeitanalyse: Anwendung Anwendung

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhangigkeit von n € N in ©-Notation
an und begriinden Sie lhre Antwort mit der genauen Anzahl der
Ausfiihrungen der Anweisung in Zeile 4 (in Abhingigkeit von n).

1 int result = 0;
2 for (dnt 1 = 0; 1 < n; i++) {

3 for (int j = i; j < n; j++) {
4 result += j;

5 }

6 F

Jetzt: nur ©-Notation

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 17 / 20

A10. Laufzeitanalyse: Anwendung Anwendung

Warum interessiert uns das alles?

» Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!

> Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

» mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!

» vmtl. schlechte Library zum Parsen

» ungeeignete Datenstruktur zum Testen auf Duplikate

» nach Fix: 70% weniger Ladezeit

> https://nee.lv/2021/02/28/
How-I-cut-GTA-Online-loading-times-by-70/index.
html

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 18. Mirz 2021 18 /

20

A10. Laufzeitanalyse: Anwendung Zusammenfassung

A10.3 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 19 / 20

A10. Laufzeitanalyse: Anwendung

Zusammenfassung

» In der Praxis konnen wir mit einfachen “Kochrezepten” recht
schnell einen Eindruck von der Laufzeit eines Verfahrens
bekommen.

» Insertionsort hat

> im besten Fall Laufzeit ©(n)
» im schlechtesten Fall Laufzeit ©(n?)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 20

Zusammenfassung

/ 20

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

	Kurze Wiederholung
	

	Anwendung
	

	Zusammenfassung
	

