Algorithmen und Datenstrukturen
A10. Laufzeitanalyse: Anwendung

Marcel Liithi and Gabriele Roger

Universitat Basel

18. Marz 2021

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

18. Marz 2021

1/

Algorithmen und Datenstrukturen
18. Marz 2021 — A10. Laufzeitanalyse: Anwendung

A10.1 Kurze Wiederholung

A10.2 Anwendung

A10.3 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 2/20

M. Liithi, G. Réger (Universitit Basel)

Inhalt dieser Veranstaltung

—| Sortieren |

Fundamentale

Datenstrukturen
— Suchen |
—‘ Graphen |
—| Strings |
| Weiterfiihrende
Themen

Algorithmen und Datenstrukturen

18. Marz 2021

3/20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

A10.1 Kurze Wiederholung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 18. Marz 2021 4 /20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Landau-Symbole

» . f wachst genauso schnell wie g*

O(g)={f|3Ic>03c" >03ng>0Vn>ng:
c-g(n) <f(n)<c-g(n)}

» . f wachst nicht wesentlich schneller als g*
O(g)={f|3c>03ng>0Vn>ng:f(n) <c-g(n)}
» . f wachst nicht wesentlich langsamer als g*

Q(g)={f|3c>03ng >0Yn>ng:c-g(n) <f(n)}

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021

5 /20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Landau-Symbol Theta: Illustration

feo(g)

100 T

80 |

40}

20

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 6 /20

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Interessante Funktionsklassen

In aufsteigender Ordnung (abgesehen von allgemeinen n*):

g Wachstum

1 konstant
logn logarithmisch

n linear

nlogn leicht lberlinear
quadratisch

n® kubisch

polynomiell (Konstante k)
2" exponentiell

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021

7

A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Zusammenhange

Es gilt:
» O(1) € O(log n) C O(n) C O(nlogn) C O(n¥) C O(2")
(fur k > 2)
> O(n1) C O(n*) fiir ky < ko
z.B. O(n?) C O(n®)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 8 /20

A10. Laufzeitanalyse: Anwendung

Rechenregeln

» Produkt

fi € O(gl) und f» € O(gz) = fih € O(glgz)
» Summe

i€ O(g1) und f, € O(g2) = i+ 2 € O(g1 + g2)
» Multiplikation mit Konstante

k>0und f € O(g) = kf € O(g)

k>0 = O(kg) = O(g)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Kurze Wiederholung

18. Marz 2021

9/

20

A10. Laufzeitanalyse: Anwendung Anwendung

A10.2 Anwendung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 18. Marz 2021 10 / 20

A10. Laufzeitanalyse: Anwendung

Schnelle O-Analyse fiir haufige Code-Konstrukte |

> konstante Operation

| var = 4| O(1) |

» Sequenz konstanter Operationen

varl = 4
4

var2

varl23 = 4

o(1)

o(1)

o(1)

0(123-1) = O(1)

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

18. Marz 2021

Anwendung

11 /20

A10. Laufzeitanalyse: Anwendung

Schnelle O-Analyse fiir haufige Code-Konstrukte Il

» Schleife
for i in range(n): | O(n) _
res += i * m 0(1) O(n-1) = O(n)
for i in range(n): O(n) | O(n)
for j in range(i): O(n) o(n) 0(n?)
res += 1 x (m - j) | O(1)

i hdngt von n ab

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

18. Marz 2021

Anwendung

12 /20

A10. Laufzeitanalyse: Anwendung Anwendung

Schnelle O-Analyse fiir haufige Code-Konstrukte Il

» if-then-else

if var < bound: 0o(1) 0O(1)
res += var 0o(1) 0O(1) O(1 + max{1, n})
else: — 0(n) ’
for i in range(n): | O(n) | O(n-1) o
res += i * n O(1) | =0(n)

Achtung: Kann zu unnétig hoher Abschatzung fiihren,
wenn teurer Fall nur fiir kleine n auftritt
(durch Konstante begrenzt).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 13 /20

A10. Laufzeitanalyse: Anwendung Anwendung

Beispiel: Worst Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # ¢ =1, ..., n - 1

4 # move arrayl[i] to the left until it is

5 # at the correct position.

6 for j in range(i, O, -1): # 7 =1+, ..., 1

7 if arrayl[j] < array[j-1]:

8 array[j], array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

» Worst case: break-Fall tritt nie ein.
» O(1+n-n-1) = O(n?)
> Uberschitzt?
Nein, beide Schleifen haben jeweils 2(n) Durchlaufe.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 14 / 20

A10. Laufzeitanalyse: Anwendung Anwendung

Beispiel: Best Case fiir Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(l, n): # ¢ =1, ..., n - 1

4 # move arrayl[i] to the left until it is

5 # at the correct position.

6 for j in range(i, O, -1): # 7 =1+, ..., 1

7 if arrayl[j] < array[j-1]:

8 array[j], array[j-1] = array[j-11, arrayl[j]
9 else:

10 break

P> Best case: break jeweils direkt bei j =i
» O(14+n-1-1)= 0(n)
» Uberschitzt?
Nein, die dussere Schleifen hat Q(n) Durchlaufe.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Miarz 2021 15 / 20

A10. Laufzeitanalyse: Anwendung Anwendung

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhangigkeit von n € N in ©-Notation
an und begriinden Sie Ihre Antwort kurz (1-2 Satze).

1 int result = O;
2 if (n > 23) {

3 return result;

4 ¥

5 for (int i = 0; i < n; i++) {

6 for (int j = 0; j < mn; j++) {
7 result += j;

8 }

o

10 return result;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 16 / 20

A10. Laufzeitanalyse: Anwendung Anwendung

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhdngigkeit von n € N in ©-Notation
an und begriinden Sie lhre Antwort mit der genauen Anzahl der
Ausfiihrungen der Anweisung in Zeile 4 (in Abhangigkeit von n).

1 int result = 0;
2 for (int i 0; i < n; i++) {

3 for (int j = i; j < n; j++) {
4 result += j;

5 ¥

o F

Jetzt: nur ©-Notation

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 17 / 20

A10. Laufzeitanalyse: Anwendung

Warum interessiert uns das alles?

» Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexitat zuriickschlagen!

> Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten

>

vyvyyy

mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
vmtl. schlechte Library zum Parsen

ungeeignete Datenstruktur zum Testen auf Duplikate

nach Fix: 70% weniger Ladezeit
https://nee.1v/2021/02/28/
How-I-cut-GTA-Online-loading-times-by-70/index.
html

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 18

Anwendung

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html

A10. Laufzeitanalyse: Anwendung Zusammenfassung

A10.3 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 18. Marz 2021 19 / 20

A10. Laufzeitanalyse: Anwendung Zusammenfassung

Zusammenfassung

» In der Praxis konnen wir mit einfachen "Kochrezepten” recht
schnell einen Eindruck von der Laufzeit eines Verfahrens
bekommen.

» Insertionsort hat

> im besten Fall Laufzeit ©(n)
> im schlechtesten Fall Laufzeit ©(n?)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 18. Marz 2021 20 / 20

	Kurze Wiederholung
	

	Anwendung
	

	Zusammenfassung
	

