
Algorithmen und Datenstrukturen
A10. Laufzeitanalyse: Anwendung

Marcel Lüthi and Gabriele Röger

Universität Basel

18. März 2021

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 1 / 20



Algorithmen und Datenstrukturen
18. März 2021 — A10. Laufzeitanalyse: Anwendung

A10.1 Kurze Wiederholung

A10.2 Anwendung

A10.3 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 2 / 20



Inhalt dieser Veranstaltung

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Weiterführende
Themen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 3 / 20



A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

A10.1 Kurze Wiederholung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 4 / 20



A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Landau-Symbole

I
”
f wächst genauso schnell wie g“

Θ(g) = {f | ∃c > 0 ∃c ′ > 0 ∃n0 > 0 ∀n ≥ n0 :

c · g(n) ≤ f (n) ≤ c ′ · g(n)}

I
”
f wächst nicht wesentlich schneller als g“

O(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : f (n) ≤ c · g(n)}

I
”
f wächst nicht wesentlich langsamer als g“

Ω(g) = {f | ∃c > 0 ∃n0 > 0 ∀n ≥ n0 : c · g(n) ≤ f (n)}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 5 / 20



A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Landau-Symbol Theta: Illustration

f ∈ Θ(g)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 6 / 20



A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Interessante Funktionsklassen

In aufsteigender Ordnung (abgesehen von allgemeinen nk):

g Wachstum

1 konstant
log n logarithmisch

n linear
n log n leicht überlinear

n2 quadratisch
n3 kubisch
nk polynomiell (Konstante k)
2n exponentiell

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 7 / 20



A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Zusammenhänge

Es gilt:

I O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(nk) ⊂ O(2n)
(für k ≥ 2)

I O(nk1) ⊂ O(nk2) für k1 < k2
z.B. O(n2) ⊂ O(n3)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 8 / 20



A10. Laufzeitanalyse: Anwendung Kurze Wiederholung

Rechenregeln

I Produkt
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

I Summe
f1 ∈ O(g1) und f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(g1 + g2)

I Multiplikation mit Konstante
k > 0 und f ∈ O(g) ⇒ kf ∈ O(g)
k > 0 ⇒ O(kg) = O(g)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 9 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

A10.2 Anwendung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 10 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

Schnelle O-Analyse für häufige Code-Konstrukte I

I konstante Operation

var = 4 O(1)

I Sequenz konstanter Operationen

var1 = 4 O(1)
var2 = 4 O(1)
... · · ·
var123 = 4 O(1)

O(123 · 1) = O(1)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 11 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

Schnelle O-Analyse für häufige Code-Konstrukte II

I Schleife

for i in range(n): O(n)
res += i * m O(1)

O(n · 1) = O(n)

for i in range(n): O(n) O(n)
for j in range(i): O(n)
res += i * (m - j) O(1)

O(n)
O(n2)

i hängt von n ab

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 12 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

Schnelle O-Analyse für häufige Code-Konstrukte III

I if-then-else

if var < bound: O(1) O(1)
res += var O(1) O(1)

else:

for i in range(n): O(n) O(n · 1)
res += i * n O(1) = O(n)

O(1 + max{1, n})
= O(n)

Achtung: Kann zu unnötig hoher Abschätzung führen,
Achtung: wenn teurer Fall nur für kleine n auftritt
Achtung: (durch Konstante begrenzt).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 13 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

Beispiel: Worst Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

I Worst case: break-Fall tritt nie ein.

I O(1 + n · n · 1) = O(n2)

I Überschätzt?
Nein, beide Schleifen haben jeweils Ω(n) Durchläufe.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 14 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

Beispiel: Best Case für Insertionsort

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 for j in range(i, 0, -1): # j = i, ..., 1

7 if array[j] < array[j-1]:

8 array[j], array[j-1] = array[j-1], array[j]

9 else:

10 break

I Best case: break jeweils direkt bei j = i

I O(1 + n · 1 · 1) = O(n)

I Überschätzt?
Nein, die äussere Schleifen hat Ω(n) Durchläufe.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 15 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhängigkeit von n ∈ N in Θ-Notation
an und begründen Sie Ihre Antwort kurz (1-2 Sätze).

1 int result = 0;

2 if (n > 23) {

3 return result;

4 }

5 for (int i = 0; i < n; i++) {

6 for (int j = 0; j < n; j++) {

7 result += j;

8 }

9 }

10 return result;

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 16 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

Klausuraufgabe 2019

Betrachten Sie folgendes Codefragment. Geben Sie die
asymptotische Laufzeit in Abhängigkeit von n ∈ N in Θ-Notation
an und begründen Sie Ihre Antwort mit der genauen Anzahl der
Ausführungen der Anweisung in Zeile 4 (in Abhängigkeit von n).

1 int result = 0;

2 for (int i = 0; i < n; i++) {

3 for (int j = i; j < n; j++) {

4 result += j;

5 }

6 }

Jetzt: nur Θ-Notation

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 17 / 20



A10. Laufzeitanalyse: Anwendung Anwendung

Warum interessiert uns das alles?

I Weil Algorithmen/Datenstrukturen mit schlechter
Laufzeitkomplexität zurückschlagen!

I Beispiel: GTA online hatte viele Jahre eine Ladezeit von
mehreren Minuten
I mehrere Minuten zum Parsen von 10 Megabyte JSON-Daten!
I vmtl. schlechte Library zum Parsen
I ungeeignete Datenstruktur zum Testen auf Duplikate
I nach Fix: 70% weniger Ladezeit
I https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/index.

html

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 18 / 20

https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/index.html


A10. Laufzeitanalyse: Anwendung Zusammenfassung

A10.3 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 19 / 20



A10. Laufzeitanalyse: Anwendung Zusammenfassung

Zusammenfassung

I In der Praxis können wir mit einfachen “Kochrezepten” recht
schnell einen Eindruck von der Laufzeit eines Verfahrens
bekommen.

I Insertionsort hat
I im besten Fall Laufzeit Θ(n)
I im schlechtesten Fall Laufzeit Θ(n2)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 18. März 2021 20 / 20


	Kurze Wiederholung
	

	Anwendung
	

	Zusammenfassung
	


