Algorithmen und Datenstrukturen
A8. Laufzeitanalyse: Top-Down-Mergesort

Marcel Liithi and Gabriele Roger
Universitat Basel

17. Marz 2021

Inhalt dieser Veranstaltung

—| Sortieren |

| Fundamentale
Datenstrukturen

_——| Suchen |

—‘ Graphen |
—{ Strings |

|| Weiterfiihrende
Themen

Top-Down-Mergesort Zusammenfass

Was bisher geschah und wie es weiter geht

m Letztes Mal: sehr detaillierte Laufzeitanalyse fiir Selectionsort
und Bottom-Up-Mergesort

m heute noch analoge Analyse fiir Top-Down-Mergesort als
Beispiel eines rekursiven Divide-and-Conquer-Verfahrens

danach Landau-Symbole fiir asymptotisches Laufzeitverhalten

und die ,,schnelle” Laufzeitanalyse in der Praxis

Beispiel: Top-Down-Mergesort

®000000

Beispiel: Top-Down-Mergesort

Beispiel: Top-Down-Mergesort
0@00000

Merge-Schritt-Ergebnis vom letzten Mal

1 def merge(array, tmp, lo, mid, hi):

2 i = 1lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,ht
5 if j > hi or (i <= mid and array[i] <= arrayl[jl):
6 tmp [k] = array[il

7 i+=1

8 else:

9 tmp [k] = arrayl[j]

10 j+=1

11 for k in range(lo, hi + 1): # k = lo,...,hs
12 array[k] = tmpl[k]

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
¢,c’,ng >0, so dass fiir alle n > ny: cn < T(n) < cn.

Beispiel: Top-Down-Mergesort

[e]e] lele]ele)

Top-Down-Mergesort

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2
sort_aux(array, tmp, lo, mid)
10 sort_aux(array, tmp, mid + 1, hi)
11 merge (array, tmp, lo, mid, hi)

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9

Analyse fir m=hi—lo+1
co fiir Zeile 6-7

cy fiir Zeile 6-8

com fiir Merge-Schritt

Beispiel: Top-Down-Mergesort Zusammenf.

[e]e]e] le]ele)

Top-Down-Mergesort: Analyse |

Laufzeit sort_aux
m T(m)=c1+2T(m/2)+ com fiir m =2k k € Ny
B T(1)=c
m Rekursive Gleichung

m Wir suchen obere Schranke, die nur von m abhingt.

Beispiel: Top-Down-Mergesort
0000800

Top-Down-Mergesort: Analyse Il
Betrachte m = 2K mit k € Nug
T(m)=c+2T(m/2)+ com

Top-Down-Mergesort: Analyse Il
Betrachte m = 2K mit k € Nug
T(m) =+ 2T(m/2) + com
=c+2(a+2T(m/4)+ c2(m/2)) + com

Beispiel: Top-Down-Mergesort Zusammenfassung

Top-Down-Mergesort: Analyse Il
Betrachte m = 2K mit k € Nug
T(m)=c+2T(m/2)+ com
=ca+2(a+2T(m/4) + c2(m/2)) + com
=ca(l+2)+2mc+4T(m/4)

Beispiel: Top-Down-Mergesort Zusammenfassung

0000e00

Top-Down-Mergesort: Analyse Il
Betrachte m = 2K mit k € Nug
T(m)=c+2T(m/2)+ com
=c +2(c+2T(m/4) 4+ c2(m/2)) + com
=ca(l+2)+2mc+4T(m/4)
=ca(l+2)+2me+4(c1 +2T(m/8) + c2(m/4))

Beispiel: Top-Down-Mergesort
0000800

Zusammenfassung

Top-Down-Mergesort: Analyse Il
Betrachte m = 2K mit k € Nug
T(m)=c+2T(m/2)+ com
=c +2(c+2T(m/4) 4+ c2(m/2)) + com
=ca(l+2)+2mc+4T(m/4)
=ca(l+2)+2me+4(c1 +2T(m/8) + c2(m/4))
=c(l+2+4)+3mc+8T(m/8)

Beispiel: Top-Down-Mergesort Zusammenfassung

0000e00

Top-Down-Mergesort: Analyse Il
Betrachte m = 2K mit k € Nug
T(m)=c+2T(m/2)+ com
=c +2(c+2T(m/4) 4+ c2(m/2)) + com
=ca(l+2)+2mc+4T(m/4)
=ca(l+2)+2me+4(c1 +2T(m/8) + c2(m/4))
=c(l+2+4)+3mc+8T(m/8)

=a(Z;:Ol 2i) + kmey + 2%

k=1
= Cl(Zi:O 2') 4+ comlogy m + mco (k = logy, m, 2% = m)

Beispiel: Top-Down-Mergesort Zusammenfassung

0000e00

Top-Down-Mergesort: Analyse Il
Betrachte m = 2K mit k € Nug
T(m)=c+2T(m/2)+ com
=+ 2(C1 + 2T(m/4) + c2(m/2)) + com
=c(l14+2)+2mc +4T(m/4)
=ca(l+2)+2me+4(c1 +2T(m/8) + c2(m/4))
=c(l+2+4)+3mc+8T(m/8)

k=1 .
= a Zi:o 2') + kmey + 2k¢eo

k—1 .
= Cl(Zi:O 2') 4+ comlogy m + mco (k = logy, m, 2% = m)
< c1k2k_1 + comlogy m+ me

< cimlogy, m+ comlog, m+ mcy

<(co+a+c)mloggm (logym =k >1)

Beispiel: Top-Down-Mergesort Zusammenfassung

0000080

Top-Down-Mergesort: Analyse Ill

m keine Zweierpotenz? 2k71 <« m < 2k
T(m)=ca+ T(|m/2])+ T([m/2]) + com
<a+2T025/2)+ om
< 2k log, 2K fiir irgendein ¢
< 2cmlogy(2m) (2K < 2m, da m > 2k71)
= 2cm(log, 2 + log, m)
= 2cm(1 + logy m) < 4cmlogy, m (1 < log, m fiir m > 2)

Beispiel: Top-Down-Mergesort Zusammenfassung

0000080

Top-Down-Mergesort: Analyse Ill

m keine Zweierpotenz? 2k71 <« m < 2k
T(m)=c+ T(Im/2])+ T([m/2]) + com
<a+2T025/2)+ om
< c2k log, 2K fiir irgendein ¢
< 2cmlogy(2m) (2K < 2m, da m > 2k71)
= 2cm(log, 2 + log, m)
= 2cm(1 + logy m) < 4cmlogy, m (1 < log, m fiir m > 2)

Obere Schranke ¢’mlog, m gilt allgemein (fiir irgendein ¢’)

Beispiel: Top-Down-Mergesort

0000080

Top-Down-Mergesort: Analyse Ill

m keine Zweierpotenz? 2k71 <« m < 2k
T(m)=c+ T(Im/2])+ T([m/2]) + com
<a+2T025/2)+ om
< c2k log, 2K fiir irgendein ¢
< 2cmlogy(2m) (2K < 2m, da m > 2k71)
= 2cm(log, 2 + log, m)
= 2cm(1 + logy m) < 4cmlogy, m (1 < log, m fiir m > 2)

Obere Schranke ¢’mlog, m gilt allgemein (fiir irgendein ¢’)
Untere Schranke?

T(m)=c foz_ol 2" + comlogy m+ mcg > comlogy m
Untere Schranke cmlog, m (fiir irgendein c)

Beispiel: Top-Down-Mergesort
000000@

Top-Down-Mergesort: Analyse IV

sort?

m Aufruf von sort_aux mit m = n = Linge der Eingabe

Beispiel: Top-Down-Mergesort Zusammenfassung

000000

Top-Down-Mergesort: Analyse IV

sort?
m Aufruf von sort_aux mit m = n = Linge der Eingabe

m Anlegen/Kopieren von Array geht in linearer Zeit
— kann durch Anpassung der Konstanten abgedeckt werden.

Beispiel: Top-Down-Mergesort Zusammenfassung

000000

Top-Down-Mergesort: Analyse IV

sort?

m Aufruf von sort_aux mit m = n = Linge der Eingabe

m Anlegen/Kopieren von Array geht in linearer Zeit
— kann durch Anpassung der Konstanten abgedeckt werden.

Top-Down-Mergesort hat leicht iiberlineare Laufzeit, d.h.
es gibt Konstanten c,c’, ng > 0, so dass fiir alle n > ny,
cnlogy n < T(n) < c’'nlog, n.

Zusammenfassung

Zusammenfassung
oe

Zusammenfassung

m Mergesort hat auch in der Top-Down-Variante
leicht tiberlineare Laufzeit.

	Beispiel: Top-Down-Mergesort
	

	Zusammenfassung
	

