
Algorithmen und Datenstrukturen
A8. Laufzeitanalyse: Top-Down-Mergesort

Marcel Lüthi and Gabriele Röger

Universität Basel

17. März 2021

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 1 / 13



Algorithmen und Datenstrukturen
17. März 2021 — A8. Laufzeitanalyse: Top-Down-Mergesort

A8.1 Beispiel: Top-Down-Mergesort

A8.2 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 2 / 13



Inhalt dieser Veranstaltung

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Weiterführende
Themen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 3 / 13



Was bisher geschah und wie es weiter geht

I Letztes Mal: sehr detaillierte Laufzeitanalyse für Selectionsort
und Bottom-Up-Mergesort

I heute noch analoge Analyse für Top-Down-Mergesort als
Beispiel eines rekursiven Divide-and-Conquer-Verfahrens

I danach Landau-Symbole für asymptotisches Laufzeitverhalten

I und die
”
schnelle” Laufzeitanalyse in der Praxis

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 4 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

A8.1 Beispiel: Top-Down-Mergesort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 5 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Merge-Schritt-Ergebnis vom letzten Mal

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Theorem
Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c , c ′, n0 > 0, so dass für alle n ≥ n0: cn ≤ T (n) ≤ c ′n.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 6 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Top-Down-Mergesort

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 sort_aux(array, tmp, lo, mid)

10 sort_aux(array, tmp, mid + 1, hi)

11 merge(array, tmp, lo, mid, hi)

Analyse für m = hi− lo + 1
c0 für Zeile 6–7
c1 für Zeile 6–8
c2m für Merge-Schritt

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 7 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse I

Laufzeit sort aux

I T (m) = c1 + 2T (m/2) + c2m für m = 2k , k ∈ N0

I T (1) = c0
I Rekursive Gleichung

I Wir suchen obere Schranke, die nur von m abhängt.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 8 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse II

Betrachte m = 2k mit k ∈ N>0

T (m) = c1 + 2T (m/2) + c2m

= c1 + 2(c1 + 2T (m/4) + c2(m/2)) + c2m

= c1(1 + 2) + 2mc2 + 4T (m/4)

= c1(1 + 2) + 2mc2 + 4(c1 + 2T (m/8) + c2(m/4))

= c1(1 + 2 + 4) + 3mc2 + 8T (m/8)

= . . .

= c1
(∑k−1

i=0
2i
)
+ kmc2 + 2kc0

= c1
(∑k−1

i=0
2i
)
+ c2m log2m +mc0 (k = log2m, 2k = m)

≤ c1k2
k−1 + c2m log2m +mc0

≤ c1m log2m + c2m log2m +mc0

≤ (c0 + c1 + c2)m log2m (log2m = k ≥ 1)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 9 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse III

m keine Zweierpotenz? 2k−1 < m < 2k

T (m) = c1 + T (bm/2c) + T (dm/2e) + c2m

≤ c1 + 2T (2k/2) + c2m

≤ c2k log2 2
k für irgendein c

< 2cm log2(2m) (2k < 2m, da m > 2k−1)

= 2cm(log2 2 + log2m)

= 2cm(1 + log2m) ≤ 4cm log2m (1 ≤ log2m für m ≥ 2)

Obere Schranke c ′m log2m gilt allgemein (für irgendein c ′)

Untere Schranke?
T (m) = c1

∑k−1
i=0 2i + c2m log2m +mc0 ≥ c2m log2m

Untere Schranke cm log2m (für irgendein c)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 10 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse IV

sort?

I Aufruf von sort aux mit m = n = Länge der Eingabe

I Anlegen/Kopieren von Array geht in linearer Zeit
→ kann durch Anpassung der Konstanten abgedeckt werden.

Theorem
Top-Down-Mergesort hat leicht überlineare Laufzeit, d.h.
es gibt Konstanten c , c ′, n0 > 0, so dass für alle n ≥ n0,
cn log2 n ≤ T (n) ≤ c ′n log2 n.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 11 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Zusammenfassung

A8.2 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 12 / 13



A8. Laufzeitanalyse: Top-Down-Mergesort Zusammenfassung

Zusammenfassung

I Mergesort hat auch in der Top-Down-Variante
leicht überlineare Laufzeit.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 17. März 2021 13 / 13


	Beispiel: Top-Down-Mergesort
	

	Zusammenfassung
	


