Algorithmen und Datenstrukturen
A8. Laufzeitanalyse: Top-Down-Mergesort

Marcel Liithi and Gabriele Roger

Universitat Basel

17. Marz 2021

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

17. Marz 2021

1/

Algorithmen und Datenstrukturen
17. Marz 2021 — A8. Laufzeitanalyse: Top-Down-Mergesort

A8.1 Beispiel: Top-Down-Mergesort

A8.2 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17. Marz 2021

2/13

M. Liithi, G. Réger (Universitit Basel)

Inhalt dieser Veranstaltung

—| Sortieren |

Fundamentale

Datenstrukturen
— Suchen |
—‘ Graphen |
—| Strings |
| Weiterfiihrende
Themen

Algorithmen und Datenstrukturen

17. Marz 2021

3/13

Was bisher geschah und wie es weiter geht

> Letztes Mal: sehr detaillierte Laufzeitanalyse fiir Selectionsort
und Bottom-Up-Mergesort

» heute noch analoge Analyse fiir Top-Down-Mergesort als
Beispiel eines rekursiven Divide-and-Conquer-Verfahrens

» danach Landau-Symbole fiir asymptotisches Laufzeitverhalten

» und die ,,schnelle” Laufzeitanalyse in der Praxis

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17. Marz 2021

4

A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

A8.1 Beispiel: Top-Down-Mergesort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 17. Marz 2021 5 /13

A8. Laufzeitanalyse: Top-Down-Mergesort

Merge-Schritt-Ergebnis vom letzten Mal

def merge(array, tmp, lo, mid, hi):

lo

mid + 1

k in range(lo, hi + 1): # k = lo,...,h%

if j > hi or (i <= mid and array[i] <= arrayl[jl):

tmp [k] = arrayl[il
i+=1

else:
tmp [k] = arrayl[j]
ja=1

k in range(lo, hi + 1): # k =

array[k] = tmp[k]

lo,...,ht

1
2 i=
3 j=
4 for
5
6
7
8
9
10
11 for
12
Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
¢,c’,ng >0, so dass fiir alle n > ny: cn < T(n) < c’n.

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

17. Marz 2021

6/

Beispiel: Top-Down-Mergesort

A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Top-Down-Mergesort

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, 0, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - lo) // 2
sort_aux(array, tmp, lo, mid)
10 sort_aux(array, tmp, mid + 1, hi)
11 merge (array, tmp, lo, mid, hi)

1
2
3
4
5 def sort_aux(array, tmp, lo, hi):
6
7
8
9

Analyse fir m=hi—lo+1
co fir Zeile 6-7

¢ fir Zeile 6-8

com fiir Merge-Schritt

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17. Marz 2021 7/13

A8. Laufzeitanalyse: Top-Down-Mergesort

Top-Down-Mergesort: Analyse |

Laufzeit sort_aux
> T(m)=c1+2T(m/2) + cam fiir m = 2k k € Ng
> T(1)=a
» Rekursive Gleichung

» Wir suchen obere Schranke, die nur von m abhingt.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

17. Marz 2021

8/

Beispiel: Top-Down-Mergesort

A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort
Top-Down-Mergesort: Analyse |l
Betrachte m = 2K mit k € Nug
T(m)=c+2T(m/2)+ com
=c1+2(c1 +2T(m/4) + c2(m/2)) + com
=ca(l+2)+2mc+4T(m/4)
=c(14+2)+2mec +4(c1 +2T(m/8) + c2(m/4))
a(l+2+4)+3mc+8T(m/8)

a (Z;:Ol 2i) + kmey + 2kco

k=1 .
Cl(zifo 2') 4+ comlogy m + mco (k = logy, m, 2% = m)
c1k2k_1 + comlogy m + mey

cimlog, m+ comlog, m+ mco

VAN VAN VAN

(co+ c1+ c2)mlog, m (logom=k > 1)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17. Marz 2021 9/13

A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse Ill

m keine Zweierpotenz? 2K-1 < m < 2k
T(m)=ca+ T(m/2])+ T([m/2]) + com
< +2T(2%/2) + com
< c2k log, 2K fiir irgendein ¢
< 2cmlogy(2m) (2 < 2m, da m > 2k71)
= 2cm(log, 2 + log, m)
= 2cm(1 + logy m) < 4cmlogy, m (1 < log, m fiir m > 2)

Obere Schranke ¢’mlog, m gilt allgemein (fiir irgendein ¢’)
Untere Schranke?

T(m)=c Zf-‘;ol 2" + comlogy, m 4+ mcy > comlog, m
Untere Schranke cmlog, m (fiir irgendein c)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17. Marz 2021 10 / 13

A8. Laufzeitanalyse: Top-Down-Mergesort Beispiel: Top-Down-Mergesort

Top-Down-Mergesort: Analyse IV

sort?
» Aufruf von sort_aux mit m = n = Lange der Eingabe

» Anlegen/Kopieren von Array geht in linearer Zeit
— kann durch Anpassung der Konstanten abgedeckt werden.

Theorem

Top-Down-Mergesort hat leicht iiberlineare Laufzeit, d.h.
es gibt Konstanten c,c’, ng > 0, so dass fiir alle n > ng,
cnlogy, n < T(n) < c’nlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 17. Marz 2021 11 /13

A8. Laufzeitanalyse: Top-Down-Mergesort Zusammenfassung

A8.2 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 17. Marz 2021 12 /13

A8. Laufzeitanalyse: Top-Down-Mergesort

Zusammenfassung

> Mergesort hat auch in der Top-Down-Variante
leicht iiberlineare Laufzeit.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

17. Marz 2021

13 /13

	Beispiel: Top-Down-Mergesort
	

	Zusammenfassung
	

