Algorithmen und Datenstrukturen

Ab5. Laufzeitanalyse: Einfiihrung und Selectionsort

Marcel Liithi and Gabriele Roger

Universitat Basel

10. Marz 2021

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021

1/

Algorithmen und Datenstrukturen
10. Marz 2021 — Ab5. Laufzeitanalyse: Einfiihrung und Selectionsort

A5.1 Laufzeitanalyse Allgemein

Ab5.2 Beispiel: Selectionsort

Ab.3 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 2/19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

A5.1 Laufzeitanalyse Allgemein

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 10. Marz 2021 3/19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Inhalt dieser Veranstaltung

—| Sortieren |
| Fundamentale
Datenstrukturen
s B
—‘ Graphen |
—| Strings |
| Weiterfiihrende
Themen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 4 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

» Ware schon: Formel, die fiir konkrete Eingabe berechnet,
wie lange das Programm lauft.
> exakte Laufzeitprognose schwierig, da zu viele Einfliisse:

P Geschwindigkeit und Architektur des Computers
» Programmiersprache

» Compilerversion

> aktuelle Auslastung (was sonst noch liuft)
» Cacheverhalten

Wir kénnen und wollen das nicht alles in die Formel aufnehmen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 5 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort

Laufzeitanalyse: Vereinfachung 1

Zahle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

> |dealerweise: eine Zeile Maschinencode oder — noch praziser —
ein Prozessorzyklus
> Stattdessen: Anweisungen, die konstante Zeit bendtigen

>

vvyyvyy

Wichtig:

konstante Zeit: Laufzeit unabhingig von Eingabe
ignoriere Laufzeitunterschiede verschiedener Anweisungen
z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
grob: Operation = eine Zeile Code

aber: auch beachten, was dahinter steht

z.B. Schritte innerhalb einer aufgerufenen Funktion

Laufzeit ungefdhr proportional zu Anzahl Operationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021

6/

Laufzeitanalyse Allgemein

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 2

Schéatze ab statt genau zu zdhlen!

» Meistens Abschatzung nach oben (, obere Schranke")
Wie viele Schritte braucht das Programm hochstens?

» Manchmal auch Abschitzung nach unten (,,untere Schranke")
Wie viele Schritte werden mindestens ausgefiihrt?

»Laufzeit” fiir Abschdtzung der Anzahl ausgefiihrter Operationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 7 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort

Laufzeitanalyse: Vereinfachung 3

Laufzeitanalyse Allgemein

Abschatzung nur abhangig von Eingabegrosse

» T(n): Laufzeit bei Eingabe der Grosse n
» Bei adaptiven Verfahren unterscheiden wir
> Beste Laufzeit (best case)
Laufzeit bei giinstigstmoglicher Eingabe
» Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestméglicher Eingabe
> Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit iiber alle Eingaben der Grésse n

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 8 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Kostenmodelle

Auch: Analyse mit Kostenmodell

» |dentifiziere grundlegende Operationen der Algorithmenklasse
z.B. fiir vergleichsbasierte Sortierverfahren

> Vergleich von Schliisselpaaren
» Tausch zweier Elemente oder Bewegung eines Elementes

» Schitze Anzahl dieser Operationen ab.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 9/19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Beispiel aus C+-+-Referenz

function template
std:SOrt
template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

<algorithm>

Sort elements in range
Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity
On average, linearithmic in the distance between first and /ast: Performs approximately N*1og;(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 10 / 19

http://www.cplusplus.com/reference/algorithm/sort/

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

A5.2 Beispiel: Selectionsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 10. Marz 2021 11 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort

Selectionsort: Algorithmus

Beispiel: Selectionsort

def selection_sort(array):
n = len(array)

for i in range(n - 1): # 4 =0, ..., n-2
find index of minimum element at positions 1, , n-1
min_index = i
for j in range(i + 1, n): # j = i+1, ..., n-1
if array[j] < array[min_index]:
min_index = j
swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 12 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort

Selectionsort mit Kostenmodell

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):

n = len(array)

for i in range(n - 1): # ¢ =0, ..., n-2
find index of minimum element at positions %, ..., n-1

min_index = i
for j in range(i + 1, n): # j = 4+1, ..., n-1
if array[j] < array[min_index]:
min_index = j
swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

— n-1 mal Tausch zweier Elemente (, linear")
— 0.5(n-1)n Schliisselvergleiche (,,quadratisch")

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021

Beispiel: Selectionsort

13 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ n? fiir n > 1 und irgendeine Konstante ¢’
» Aussere Schleife (3-10) und innere Schleife (6-8)

» Anzahl Operationen fiir jede Iteration der dusseren Schleife:

> Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
» Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

i | # Operationen

0|a(n—1)+b
1]aln—2)+b
n-2|a-1+b

> Insgesamt: T(n) = Y7 2(a(n— (i +1)) + b)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 14 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

Selectionsort: Analyse Il

T(n) =3 Y(a(n—(i+1)) +b)
=" a(n— i)+ b)
= 32:11(n — i)+ b(n—1)
=0.5a(n—1)n+ b(n—1)
< 0.5an* 4 b(n — 1)
< 0.5an* + b(n —1)n
< 0.5an? + bn?
= (0.5a + b)n?

= mit ¢’ = (0.5a+ b) gilt fiir n > 1, dass T(n) < ¢’ - n?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 15 / 19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante c

T(n)=---=0.5a(n—1)n+ b(n—1)
>0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?
Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten

c>0,¢ >0,np >0, so dass fiir n > ng: cn®> < T(n) < c’n?.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 16 / 19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

Selectionsort: Analyse IV

Quadratische Laufzeit:

doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 108 Sek.
> Bei 1 Tsd. Elementen warten wir

1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.

Bei 10 Tsd. Elementen 1078 - (10*)2 = 1 Sekunde

Bei 100 Tsd. Elementen 1078 - (10%)2 = 100 Sekunden

Bei 1 Mio. Elementen 1078 - (10°)2 Sekunden = 2.77 Stunden

Bei 1 Mrd. Elementen 1078 - (10°)? Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind ,nur* 4 GB.

vvyYyy

Quadratische Laufzeit problematisch fiir grosse Eingaben

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021 17 /19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Zusammenfassung

A5.3 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 10. Marz 2021 18 / 19

A5. Laufzeitanalyse: Einfiihrung und Selectionsort Zusammenfassung

Zusammenfassung

> Bei der Laufzeitanalyse schatzen wir die Anzahl der
ausgefiihrten Operationen ab.

» Wir zdhlen nicht exakt.
» Wir ignorieren, wie lange eine Operation tatsichlich dauert.
» Hauptsache: Laufzeit ungefahr proportional zu Anzahl
Operationen.
> Selectionsort hat quadratische Laufzeit und bendtigt linear
viele Vertauschungen und quadratisch viele
Schliisselvergleiche.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 10. Marz 2021

19 /19

	Laufzeitanalyse Allgemein
	

	Beispiel: Selectionsort
	

	Zusammenfassung
	

