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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

A5.1 Laufzeitanalyse Allgemein
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

» Ware schon: Formel, die fiir konkrete Eingabe berechnet,
wie lange das Programm lauft.
> exakte Laufzeitprognose schwierig, da zu viele Einfliisse:

P Geschwindigkeit und Architektur des Computers
» Programmiersprache

» Compilerversion

> aktuelle Auslastung (was sonst noch liuft)
» Cacheverhalten

Wir kénnen und wollen das nicht alles in die Formel aufnehmen.
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort

Laufzeitanalyse: Vereinfachung 1

Zahle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

> |dealerweise: eine Zeile Maschinencode oder — noch praziser —
ein Prozessorzyklus
> Stattdessen: Anweisungen, die konstante Zeit bendtigen

>

vvyyvyy

Wichtig:

konstante Zeit: Laufzeit unabhingig von Eingabe
ignoriere Laufzeitunterschiede verschiedener Anweisungen
z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
grob: Operation = eine Zeile Code

aber: auch beachten, was dahinter steht

z.B. Schritte innerhalb einer aufgerufenen Funktion

Laufzeit ungefdhr proportional zu Anzahl Operationen
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 2

Schéatze ab statt genau zu zdhlen!

» Meistens Abschatzung nach oben (, obere Schranke")
Wie viele Schritte braucht das Programm hochstens?

» Manchmal auch Abschitzung nach unten (,,untere Schranke")
Wie viele Schritte werden mindestens ausgefiihrt?

»Laufzeit” fiir Abschdtzung der Anzahl ausgefiihrter Operationen
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort

Laufzeitanalyse: Vereinfachung 3

Laufzeitanalyse Allgemein

Abschatzung nur abhangig von Eingabegrosse

» T(n): Laufzeit bei Eingabe der Grosse n
» Bei adaptiven Verfahren unterscheiden wir
> Beste Laufzeit (best case)
Laufzeit bei giinstigstmoglicher Eingabe
» Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestméglicher Eingabe
> Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit iiber alle Eingaben der Grésse n
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Kostenmodelle

Auch: Analyse mit Kostenmodell

» |dentifiziere grundlegende Operationen der Algorithmenklasse
z.B. fiir vergleichsbasierte Sortierverfahren

> Vergleich von Schliisselpaaren
» Tausch zweier Elemente oder Bewegung eines Elementes

» Schitze Anzahl dieser Operationen ab.
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Laufzeitanalyse Allgemein

Beispiel aus C+-+-Referenz

function template
std:SOrt
template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

<algorithm>

Sort elements in range
Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity
On average, linearithmic in the distance between first and /ast: Performs approximately N*1og;(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

A5.2 Beispiel: Selectionsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 10. Marz 2021 11 /19



A5. Laufzeitanalyse: Einfiihrung und Selectionsort

Selectionsort: Algorithmus

Beispiel: Selectionsort

def selection_sort(array):
n = len(array)

for i in range(n - 1): # 4 =0, ..., n-2
# find index of minimum element at positions 1, , n-1
min_index = i
for j in range(i + 1, n): # j = i+1, ..., n-1
if array[j] < array[min_index]:
min_index = j
# swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort

Selectionsort mit Kostenmodell

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):

n = len(array)

for i in range(n - 1): # ¢ =0, ..., n-2
# find index of minimum element at positions %, ..., n-1

min_index = i
for j in range(i + 1, n): # j = 4+1, ..., n-1
if array[j] < array[min_index]:
min_index = j
# swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

— n-1 mal Tausch zweier Elemente (, linear")
— 0.5(n-1)n Schliisselvergleiche (,,quadratisch")
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ n? fiir n > 1 und irgendeine Konstante ¢’
» Aussere Schleife (3-10) und innere Schleife (6-8)

» Anzahl Operationen fiir jede Iteration der dusseren Schleife:

> Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
» Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

i | # Operationen

0|a(n—1)+b
1]aln—2)+b
n-2|a-1+b

> Insgesamt: T(n) = Y7 2(a(n— (i +1)) + b)
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

Selectionsort: Analyse Il

T(n) =3 Y(a(n—(i+1)) +b)
=" a(n— i)+ b)
= 32:11(n — i)+ b(n—1)
=0.5a(n—1)n+ b(n—1)
< 0.5an* 4 b(n — 1)
< 0.5an* + b(n —1)n
< 0.5an? + bn?
= (0.5a + b)n?

= mit ¢’ = (0.5a+ b) gilt fiir n > 1, dass T(n) < ¢’ - n?
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante c

T(n)=---=0.5a(n—1)n+ b(n—1)
>0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?
Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten

c>0,¢ >0,np >0, so dass fiir n > ng: cn®> < T(n) < c’n?.
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Beispiel: Selectionsort

Selectionsort: Analyse IV

Quadratische Laufzeit:

doppelt so grosse Eingabe, ca. viermal so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 108 Sek.
> Bei 1 Tsd. Elementen warten wir

1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.

Bei 10 Tsd. Elementen 1078 - (10*)2 = 1 Sekunde

Bei 100 Tsd. Elementen 1078 - (10%)2 = 100 Sekunden

Bei 1 Mio. Elementen 1078 - (10°)2 Sekunden = 2.77 Stunden

Bei 1 Mrd. Elementen 1078 - (10°)? Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind ,nur* 4 GB.

vvyYyy

Quadratische Laufzeit problematisch fiir grosse Eingaben
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Zusammenfassung

A5.3 Zusammenfassung
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A5. Laufzeitanalyse: Einfiihrung und Selectionsort Zusammenfassung

Zusammenfassung

> Bei der Laufzeitanalyse schatzen wir die Anzahl der
ausgefiihrten Operationen ab.

» Wir zdhlen nicht exakt.
» Wir ignorieren, wie lange eine Operation tatsichlich dauert.
» Hauptsache: Laufzeit ungefahr proportional zu Anzahl
Operationen.
> Selectionsort hat quadratische Laufzeit und bendtigt linear
viele Vertauschungen und quadratisch viele
Schliisselvergleiche.
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