Algorithmen und Datenstrukturen
A4. Sortieren Il: Mergesort

Marcel Lithi and Gabriele Roger

Universitat Basel

4./10. Marz 2021

Mergesort

Mergesort
000

Sortierverfahren

—| Insertionsort |

Nicht —
vergleichsbasierte Minimale
Verfahren Vergleichszahl

—| Quick Sort |

- —{ Heap Sort |
Uberblick und
Ausblick

Zusammenf.

Mergesort
00®0

Mergesort: ldee

m Beobachtung: zwei bereits sortierte Sequenzen lassen sich
leicht zu einer sortierten Sequenz vereinen.
m Sequenzen mit einem oder keinem Element sind sortiert.
m |dee fiir langere Sequenzen:
m Teile Eingabesequenz in zwei etwa gleich grosse Teilbereiche

m Rekursiver Aufruf fiir beide Teilbereiche
m Fiige nun sortierte Teilbereiche zusammen.

m Teile-und-Herrsche-Ansatz (divide and conquer)

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Mergesort
feelel)

Mergesort: lllustration

Merge-Schritt
©00000

Merge-Schritt

Merge-Schritt <] geso 3 -Up-Mergesort Zusammenfas:

0O®@0000

Verbinden der Teillosungen

Indizes lo < mid < hi

Annahme: array[lo] bis array[mid] und
array[mid+1] bis array[hi] sind bereits sortiert

Ziel: array[lo] bis array[hi] ist sortiert

Idee: gehe parallel von vorne nach hinten durch beide
Teilbereiche und sammle das jeweils kleinere Element auf

m Verwendet zusatzlichen Speicher fiir aufgesammelte Werte

E - G S
Verbinden der Teillosungen: Beispiel
Array tmp hat gleiche Grosse wie Eingabearray.
Initialisierung: i :=lo, j :=mid + 1, k :=lo

a tmp
loji mid J hi

- EELEE - - OO0

Merge-Schritt
00@000

Verbinden der Teillosungen: Beispiel

Array tmp hat gleiche Grosse wie Eingabearray.
Initialisierung: i :=lo, j :=mid + 1, k :=lo

a tmp
lo,i mid J hi k
- [2fals a7] - DI
k

lo i mid J hi

SE L1 1 K kA R Pl I

afil<afj] = tmp[k] = a[]

Merge-Schritt
00@000

Verbinden der Teillosungen: Beispiel

Array tmp hat gleiche Grosse wie Eingabearray.

Initialisierung: i :=lo, j :=mid + 1, k :=lo
o a tmp
oi mid i hi k
[2]a]s]4]7] - mDDDDDM[]m L
lo i mid J hi k ali]<alj] = tmp[k] = a]i
EEIIIM - -
mid,i j hi k afi]<alj] = tmp[k] = ali]

RLlsA - R

Merge-Schritt
00000

Verbinden der Teillosungen: Beispiel

Array tmp hat gleiche Grosse wie Eingabearray.

Initialisierung: i :=lo, j :=mid + 1, k :=lo
o a tmp
oi mid i hi k
[2]a]s]4]7] - mDDDDDM[]m L
lo i mid J hi k ali]<alj] = tmp[k] = a]i
EEIIIM - -
mid,i j hi k afi]<alj] = tmp[k] = ali]
IEIEIM L2l]
mid,i hij k a[j]<al[i] = tmp[k] = alj]

RLDSJaT - Al

Merge-Schritt
00000

Verbinden der Teillosungen: Beispiel

Array tmp hat gleiche Grosse wie Eingabearray.

Initialisierung: i :=lo, j :=mid + 1, k :=lo
a tmp
loji mid J hi

[2]4]s]4] 7]

lo i mid J hi

- [2fafslefr]

mid,i j hi

IEIEIM

mid,i hi,j

IEIEIW

mld i h'J

-
-
R
Jalal -
Al -

afil<afj] = tmp[k] = a[]

afi]<a[j] = tmplk] = ali]

afjl<ali] = tmp[k] = a[j]

a[i]<a[j] = tmplk] = ali]

Merge-Schritt
00000

Verbinden der Teillosungen: Beispiel

Array tmp hat gleiche Grosse wie Eingabearray.

Initialisierung: i :=lo, j :=mid + 1, k :=lo
a tmp
loji mid J hi

[2]4]s]4] 7]

lo i mid J hi

- [2fafslefr]

mid,i j hi

IEIEIM

mid,i hi,j

IEIEIW

mld i h'J

mld i hi

EEIIIM

-
-
R
Jalal -
Al -
Jalals]E)

afil<afj] = tmp[k] = a[]

afi]<a[j] = tmplk] = ali]

afjl<ali] = tmp[k] = a[j]

a[i]<a[j] = tmplk] = ali]

i>mid = tmp[k] = a[j]

Merge-Schritt
000800

Verbinden der Teillosungen: Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12

def merge(array, tmp, lo, mid, hi):

for

lo

mid + 1

k in range(lo, hi + 1): # k = lo,...,ht

if j > hi or (i <= mid and array[i] <= arrayl[jl):
tmp (k] = array[il]

i+=1

else:
tmp[k] = arrayl[j]
j=t

k in range(lo, hi + 1): # k = lo,...,ht
array[k] = tmp[kl]

Merge-Schritt
000800

Verbinden der Teillosungen: Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12

def merge(array, tmp, lo, mid, hi):

for

lo

mid + 1

k in range(lo, hi + 1): # k = lo,...,ht

if j > hi or (i <= mid and array[i] <= arrayl[jl):
tmp (k] = array[il]

i+=1

else:
tmp[k] = arrayl[j]
j=t

k in range(lo, hi + 1): # k = lo,...,ht
array[k] = tmp[kl]

Auch korrekt fur lo = mid = hi

Merge-Schritt
000000

Jupyter-Notebook

@
_
Jupyter
o

Jupyter-Notebook: merge_sort.ipynb

Merge-Schritt
000000

Questions

o

~

Questions?

Top-Down-Mergesort

®0000000

Top-Down-Mergesort

Top-Down-Mergesort
0®000000

Mergesort: Algorithmus

rekursive Top-Down-Version

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2
//: Division mit Abrunden
10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge (array, tmp, lo, mid, hi)

1

2

3

4

5 def sort_aux(array, tmp, lo, hi):
6

7

8

9

Top-Down-Mergesort

[e]e] le]e]elele)

Mogliche Verbesserungen

m Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
— verwende Insertionsort wenn hi - lo klein

Top-Down-Mergesort 3 p-Mer Zusammenfas:

[e]e] le]e]elele)

Mogliche Verbesserungen

m Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
— verwende Insertionsort wenn hi - lo klein

m Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollstandig sortiert
if array[mid] <= array[mid + 1]:
return

Top-Down-Mergesort 3ottom-Up-Mergesort Zusammenfassung

[e]e] le]e]elele)

Mogliche Verbesserungen

m Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
— verwende Insertionsort wenn hi - lo klein

m Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollstandig sortiert
if array[mid] <= array[mid + 1]:
return
m Kopieren von tmp-Ergebnis in merge kostet Zeit
— tausche Rolle von array und tmp
bei jedem rekursiven Aufruf

Top-Down-Mergesort 3 p-Mer Zusammenfas:

[e]o]e] le]elele)

Merge-Schritt: Korrektheit

m Invariante: Am Ende jeder Schleifeniteration ist
m tmp[k] < array[m] fiir alle i < m < mid, und
m tmp[k] < arrayl[n] fiir alle j < n < hi.
® tmp wird von vorne nach hinten beschrieben.
m Nach letzter Schleifeniteration gilt fiir alle lo < r < s < hi,
dass tmp [r] <tmp[s] (= Bereich ist sortiert).

itt Top-Down-Mergesort Sotto g “usammenfassung
[e]e]e]e] Telele] O O

Mergesort: Korrektheit

sort_aux:
m Induktionsbeweis liber Bereichslange hi — lo
m Basis hi — lo = —1: leerer Bereich ist sortiert.

m Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.

Top-Down-Mergesort J Zusammenf.
[e]e]e]e] Telele] O

Mergesort: Korrektheit

sort_aux:

Induktionsbeweis iiber Bereichslange hi — lo

m Basis hi — lo = —1: leerer Bereich ist sortiert.

m Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.
m Induktionshypothese: Mergesort ist korrekt fiir alle hi —lo < m
m Induktionsschritt (m — 1 — m):

Top-Down-Mergesort p-Me Zusammenf.

[e]o]e]e] lelele)

Mergesort: Korrektheit

sort_aux:
m Induktionsbeweis liber Bereichslange hi — lo
Basis hi — lo = —1: leerer Bereich ist sortiert.
Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt fiir alle hi —lo < m

Induktionsschritt (m — 1 — m):

Mergesort macht zwei rekursive Aufrufe mit

hi —lo < m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (It. Ind.-hyp).

Top-Down-Mergesort 3 p-Mer Zusammenfas:

[e]o]e]e] lelele)

Mergesort: Korrektheit

sort_aux:
m Induktionsbeweis iiber Bereichslange hi — lo
Basis hi — lo = —1: leerer Bereich ist sortiert.
Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt fiir alle hi —lo < m

Induktionsschritt (m — 1 — m):

Mergesort macht zwei rekursive Aufrufe mit

hi —lo < m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (It. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Top-Down-Mergesort 3 1-Up-Mergesort Zusammenfas:

[e]o]e]e] lelele)

Mergesort: Korrektheit

sort_aux:
m Induktionsbeweis liber Bereichslange hi — lo
Basis hi — lo = —1: leerer Bereich ist sortiert.
Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt fiir alle hi —lo < m

Induktionsschritt (m — 1 — m):

Mergesort macht zwei rekursive Aufrufe mit

hi —lo < m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (It. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort_aux fiir gesamten Bereich auf,
daher ist am Ende die gesamte Eingabe sortiert.

1
2
3
4
5
6
7
8
9

10
11
12

Mer chritt Top-Down-Mergesort
s 0000000

Mergesort: Eigenschaften (slido)

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)
def sort_aux(array, tmp, lo, hi):
if hi <= lo:
return

mid = lo + (hi - 1lo) // 2

//: Division mit Abrunden
sort_aux(array, tmp, lo, mid)
sort_aux(array, tmp, mid + 1, hi)
merge (array, tmp, lo, mid, hi)

Welche der folgenden Eigenschaften hat Mergesort?
In-place? Adaptiv? Stabil?

Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung
00000080 0000 e

Mergesort: Eigenschaften

m nicht in-place: verwendet zusitzlichen Speicherplatz fiir tmp
und fiir Aufrufstapel (call stack)

m Zeitbedarf: nicht adaptiv (ausser mit
Mergeabbruch-Verbesserung)
genauere Analyse: ndchste Woche

m stabil: merge préferiert array[i],
wenn array[i] gleich array[j].

Top-Down-Mergesort
0000000@

Questions

o

~

Questions?

Bottom-Up-Mergesort

Bottom-Up-Mergesort
fo] Yole)

Bottom-Up-Version

Bottom-Up-Mergesort
fo] Yole)

Bottom-Up-Version

Bottom-Up-Mergesort
fo] Yole)

Bottom-Up-Version

Bottom-Up-Mergesort
fo] Yole)

Bottom-Up-Version

Bottom-Up-Mergesort
fo] Yole)

Bottom-Up-Version

lo=20 lo=2 lo=4 lo=16
mid = 0 mid = 2 mid =4 mid =06
hi=1 hi=3 hi=25 hi=06

Bottom-Up-Mergesort
fo] Yole)

Bottom-Up-Version

lo=20 lo=2 lo=4 lo=16
mid = 0 mid = 2 mid =4 mid =06
hi=1 hi=3 hi=25 hi=06
lo=20 lo=4
mid =1 mid =5

Bottom-Up-Mergesort
fo] Yole)

Bottom-Up-Version

lo=20 lo=2 lo=4 lo=16
mid = 0 mid = 2 mid =4 mid =06
hi=1 hi=3 hi=5 hi=26
mid =1 mid = 5
lo=20
mid = 3

Bottom-Up-Mergesort
0000

Bottom-Up-Mergesort: Algorithm

iterative Bottom-Up-Version

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Bottom-Up-Mergesort
oooe

Questions

o

~

Questions?

Zusammenfassung

Zusammenfassung

oe

Zusammenfassung

m Mergesort ist ein Teile-und-Herrsche-Verfahren, das den zu
sortierenden Bereich in zwei etwa gleich grosse Bereiche teilt.

m Der Merge-Schritt fiihrt zwei bereits sortierte Teilbereiche
zusammen.

m Mergesort ist stabil, arbeitet aber nicht in-place.
m Die Top-Down-Variante ist ein rekursives Verfahren.

m Die Bottom-Up-Variante ist ein iteratives Verfahren.

	Mergesort
	

	Merge-Schritt
	

	Top-Down-Mergesort
	

	Bottom-Up-Mergesort
	

	Zusammenfassung
	

