
Algorithmen und Datenstrukturen
A4. Sortieren II: Mergesort

Marcel Lüthi and Gabriele Röger

Universität Basel

4./10. März 2021

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Idee

Beobachtung: zwei bereits sortierte Sequenzen lassen sich
leicht zu einer sortierten Sequenz vereinen.

Sequenzen mit einem oder keinem Element sind sortiert.

Idee für längere Sequenzen:

Teile Eingabesequenz in zwei etwa gleich grosse Teilbereiche
Rekursiver Aufruf für beide Teilbereiche
Füge nun sortierte Teilbereiche zusammen.

Teile-und-Herrsche-Ansatz (divide and conquer)

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 5

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 5

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 5

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 5

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 53 7

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 53 7

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 53 7

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 52 3 7 9

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 52 3 7 9

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 52 3 7 9

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 52 3 7 9 1 7

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 52 3 7 9 1 7

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 52 3 7 9 1 7

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 52 3 7 9 1 4 5 7

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Illustration

7 3 2 9 7 1 4 51 2 3 4 5 7 7 9

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Merge-Schritt

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen

Indizes lo ≤ mid < hi

Annahme: array[lo] bis array[mid] und
array[mid+1] bis array[hi] sind bereits sortiert

Ziel: array[lo] bis array[hi] ist sortiert

Idee: gehe parallel von vorne nach hinten durch beide
Teilbereiche und sammle das jeweils kleinere Element auf

Verwendet zusätzlichen Speicher für aufgesammelte Werte

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen: Beispiel

Array tmp hat gleiche Grösse wie Eingabearray.
Initialisierung: i := lo, j := mid + 1, k := lo

a tmp

. . . 2

lo,i

4 5

mid

4

j

7

hi

.
k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4

i

5

mid

4

j

7

hi

. 2

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid,i

4

j

7

hi

. 2 4

k

. . .

a[j]<a[i] ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid,i

4 7

hi,j

. 2 4 4

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid

4

i

7

hi,j

. 2 4 4 5

k

. . .

i>mid ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid

4

i

7

hi

. 2 4 4 5 7 . . .

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen: Beispiel

Array tmp hat gleiche Grösse wie Eingabearray.
Initialisierung: i := lo, j := mid + 1, k := lo

a tmp

. . . 2

lo,i

4 5

mid

4

j

7

hi

.
k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4

i

5

mid

4

j

7

hi

. 2

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid,i

4

j

7

hi

. 2 4

k

. . .

a[j]<a[i] ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid,i

4 7

hi,j

. 2 4 4

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid

4

i

7

hi,j

. 2 4 4 5

k

. . .

i>mid ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid

4

i

7

hi

. 2 4 4 5 7 . . .

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen: Beispiel

Array tmp hat gleiche Grösse wie Eingabearray.
Initialisierung: i := lo, j := mid + 1, k := lo

a tmp

. . . 2

lo,i

4 5

mid

4

j

7

hi

.
k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4

i

5

mid

4

j

7

hi

. 2

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid,i

4

j

7

hi

. 2 4

k

. . .

a[j]<a[i] ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid,i

4 7

hi,j

. 2 4 4

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid

4

i

7

hi,j

. 2 4 4 5

k

. . .

i>mid ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid

4

i

7

hi

. 2 4 4 5 7 . . .

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen: Beispiel

Array tmp hat gleiche Grösse wie Eingabearray.
Initialisierung: i := lo, j := mid + 1, k := lo

a tmp

. . . 2

lo,i

4 5

mid

4

j

7

hi

.
k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4

i

5

mid

4

j

7

hi

. 2

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid,i

4

j

7

hi

. 2 4

k

. . .

a[j]<a[i] ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid,i

4 7

hi,j

. 2 4 4

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid

4

i

7

hi,j

. 2 4 4 5

k

. . .

i>mid ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid

4

i

7

hi

. 2 4 4 5 7 . . .

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen: Beispiel

Array tmp hat gleiche Grösse wie Eingabearray.
Initialisierung: i := lo, j := mid + 1, k := lo

a tmp

. . . 2

lo,i

4 5

mid

4

j

7

hi

.
k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4

i

5

mid

4

j

7

hi

. 2

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid,i

4

j

7

hi

. 2 4

k

. . .

a[j]<a[i] ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid,i

4 7

hi,j

. 2 4 4

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid

4

i

7

hi,j

. 2 4 4 5

k

. . .

i>mid ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid

4

i

7

hi

. 2 4 4 5 7 . . .

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen: Beispiel

Array tmp hat gleiche Grösse wie Eingabearray.
Initialisierung: i := lo, j := mid + 1, k := lo

a tmp

. . . 2

lo,i

4 5

mid

4

j

7

hi

.
k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4

i

5

mid

4

j

7

hi

. 2

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid,i

4

j

7

hi

. 2 4

k

. . .

a[j]<a[i] ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid,i

4 7

hi,j

. 2 4 4

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid

4

i

7

hi,j

. 2 4 4 5

k

. . .

i>mid ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid

4

i

7

hi

. 2 4 4 5 7 . . .

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen: Algorithmus

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Auch korrekt für lo = mid = hi

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Verbinden der Teillösungen: Algorithmus

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Auch korrekt für lo = mid = hi

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Jupyter-Notebook

Jupyter-Notebook: merge sort.ipynb

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Questions

Questions?

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Top-Down-Mergesort

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Algorithmus

rekursive Top-Down-Version

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mögliche Verbesserungen

Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
→ verwende Insertionsort wenn hi - lo klein

Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollständig sortiert

if array[mid] <= array[mid + 1]:

return

Kopieren von tmp-Ergebnis in merge kostet Zeit
→ tausche Rolle von array und tmp

→ bei jedem rekursiven Aufruf

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mögliche Verbesserungen

Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
→ verwende Insertionsort wenn hi - lo klein

Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollständig sortiert

if array[mid] <= array[mid + 1]:

return

Kopieren von tmp-Ergebnis in merge kostet Zeit
→ tausche Rolle von array und tmp

→ bei jedem rekursiven Aufruf

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mögliche Verbesserungen

Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
→ verwende Insertionsort wenn hi - lo klein

Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollständig sortiert

if array[mid] <= array[mid + 1]:

return

Kopieren von tmp-Ergebnis in merge kostet Zeit
→ tausche Rolle von array und tmp

→ bei jedem rekursiven Aufruf

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Merge-Schritt: Korrektheit

Invariante: Am Ende jeder Schleifeniteration ist

tmp[k] ≤ array[m] für alle i ≤ m ≤ mid, und
tmp[k] ≤ array[n] für alle j ≤ n ≤ hi.

tmp wird von vorne nach hinten beschrieben.

Nach letzter Schleifeniteration gilt für alle lo ≤ r < s ≤ hi,
dass tmp[r]≤tmp[s] (= Bereich ist sortiert).

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Korrektheit

sort aux:

Induktionsbeweis über Bereichslänge hi− lo

Basis hi− lo = −1: leerer Bereich ist sortiert.

Basis hi− lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt für alle hi− lo < m

Induktionsschritt (m − 1→ m):

Mergesort macht zwei rekursive Aufrufe mit
hi− lo ≤ m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (lt. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort aux für gesamten Bereich auf,
Mergesort: daher ist am Ende die gesamte Eingabe sortiert.

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Korrektheit

sort aux:

Induktionsbeweis über Bereichslänge hi− lo

Basis hi− lo = −1: leerer Bereich ist sortiert.

Basis hi− lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt für alle hi− lo < m

Induktionsschritt (m − 1→ m):

Mergesort macht zwei rekursive Aufrufe mit
hi− lo ≤ m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (lt. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort aux für gesamten Bereich auf,
Mergesort: daher ist am Ende die gesamte Eingabe sortiert.

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Korrektheit

sort aux:

Induktionsbeweis über Bereichslänge hi− lo

Basis hi− lo = −1: leerer Bereich ist sortiert.

Basis hi− lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt für alle hi− lo < m

Induktionsschritt (m − 1→ m):
Mergesort macht zwei rekursive Aufrufe mit
hi− lo ≤ m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (lt. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort aux für gesamten Bereich auf,
Mergesort: daher ist am Ende die gesamte Eingabe sortiert.

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Korrektheit

sort aux:

Induktionsbeweis über Bereichslänge hi− lo

Basis hi− lo = −1: leerer Bereich ist sortiert.

Basis hi− lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt für alle hi− lo < m

Induktionsschritt (m − 1→ m):
Mergesort macht zwei rekursive Aufrufe mit
hi− lo ≤ m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (lt. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort aux für gesamten Bereich auf,
Mergesort: daher ist am Ende die gesamte Eingabe sortiert.

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Korrektheit

sort aux:

Induktionsbeweis über Bereichslänge hi− lo

Basis hi− lo = −1: leerer Bereich ist sortiert.

Basis hi− lo = 0: Bereich mit nur einem Element ist sortiert.

Induktionshypothese: Mergesort ist korrekt für alle hi− lo < m

Induktionsschritt (m − 1→ m):
Mergesort macht zwei rekursive Aufrufe mit
hi− lo ≤ m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (lt. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort aux für gesamten Bereich auf,
Mergesort: daher ist am Ende die gesamte Eingabe sortiert.

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Eigenschaften (slido)

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

Welche der folgenden Eigenschaften hat Mergesort?
In-place? Adaptiv? Stabil?

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Mergesort: Eigenschaften

nicht in-place: verwendet zusätzlichen Speicherplatz für tmp
und für Aufrufstapel (call stack)

Zeitbedarf: nicht adaptiv (ausser mit
Mergeabbruch-Verbesserung)
genauere Analyse: nächste Woche

stabil: merge präferiert array[i],
wenn array[i] gleich array[j].

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Questions

Questions?

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Mergesort

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Version

0 1 2 3 4 5 6

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Version

0 1 2 3 4 5 6

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Version

0 1 2 3 4 5 6

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Version

0 1 2 3 4 5 6

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Version

0 1 2 3 4 5 6

lo = 0
mid = 0
hi = 1

lo = 2
mid = 2
hi = 3

lo = 4
mid = 4
hi = 5

lo = 6
mid = 6
hi = 6

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Version

0 1 2 3 4 5 6

lo = 0
mid = 0
hi = 1

lo = 2
mid = 2
hi = 3

lo = 4
mid = 4
hi = 5

lo = 6
mid = 6
hi = 6

lo = 0
mid = 1
hi = 3

lo = 4
mid = 5
hi = 6

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Version

0 1 2 3 4 5 6

lo = 0
mid = 0
hi = 1

lo = 2
mid = 2
hi = 3

lo = 4
mid = 4
hi = 5

lo = 6
mid = 6
hi = 6

lo = 0
mid = 1
hi = 3

lo = 4
mid = 5
hi = 6

lo = 0
mid = 3
hi = 6

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Bottom-Up-Mergesort: Algorithm

iterative Bottom-Up-Version

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Questions

Questions?

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Zusammenfassung

Mergesort Merge-Schritt Top-Down-Mergesort Bottom-Up-Mergesort Zusammenfassung

Zusammenfassung

Mergesort ist ein Teile-und-Herrsche-Verfahren, das den zu
sortierenden Bereich in zwei etwa gleich grosse Bereiche teilt.

Der Merge-Schritt führt zwei bereits sortierte Teilbereiche
zusammen.

Mergesort ist stabil, arbeitet aber nicht in-place.

Die Top-Down-Variante ist ein rekursives Verfahren.

Die Bottom-Up-Variante ist ein iteratives Verfahren.

	Mergesort
	

	Merge-Schritt
	

	Top-Down-Mergesort
	

	Bottom-Up-Mergesort
	

	Zusammenfassung
	

