Algorithmen und Datenstrukturen
A4. Sortieren Il: Mergesort

Marcel Liithi and Gabriele Roger
Universitat Basel

4./10. Marz 2021

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

4./10. Marz 2021

1/

Algorithmen und Datenstrukturen
4./10. Méarz 2021 — A4. Sortieren Il: Mergesort

A4.1 Mergesort

A4.2 Merge-Schritt

A4.3 Top-Down-Mergesort
A4.4 Bottom-Up-Mergesort

A4.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 2/23

A4. Sortieren |I: Mergesort Mergesort

A4.1 Mergesort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 3/23

A4. Sortieren |I: Mergesort Mergesort

-—| Selectionsort |

—| Insertionsort |
Nicht —
_ vergleichsbasierte Minimale

Verfahren Vergleichszahl

—| Quick Sort |

- —{ Heap Sort
Uberblick und P |
Ausblick

Sortierverfahren

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 4 /23

A4. Sortieren |l: Mergesort Mergesort

Mergesort: ldee

» Beobachtung: zwei bereits sortierte Sequenzen lassen sich
leicht zu einer sortierten Sequenz vereinen.
» Sequenzen mit einem oder keinem Element sind sortiert.

> |dee fiir langere Sequenzen:

» Teile Eingabesequenz in zwei etwa gleich grosse Teilbereiche
» Rekursiver Aufruf fiir beide Teilbereiche
» Fiige nun sortierte Teilbereiche zusammen.

» Teile-und-Herrsche-Ansatz (divide and conquer)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 5/23

A4. Sortieren |I: Mergesort

Mergesort: lllustration

Mergesort
7 03 2 9 7 1 4 5
7] B2 off7 1 4 s
3 7|2 [ffj7 1 4 s
3 7]l2 o7 1 4 s
2 3 7 o|ll7] [[a s
2 3 7 9of1 4 5 7
1 2 3 4 5 7 7 9
(Detaillierte Animation in Bildschirm-Version der Folien)
Algorithmen und Datenstrukcaren 10 e 202 62

M. Liithi, G. Réger (Universitit Basel)

A4. Sortieren |I: Mergesort Merge-Schritt

A4.2 Merge-Schritt

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 7/23

A4. Sortieren Il: Mergesort Merge-Schritt

Verbinden der Teillésungen

» Indizes lo < mid < hi

» Annahme: array[lo] bis array[mid] und
array[mid+1] bis array[hi] sind bereits sortiert

» Ziel: array[lo] bis array[hi] ist sortiert

> |dee: gehe parallel von vorne nach hinten durch beide
Teilbereiche und sammle das jeweils kleinere Element auf

» Verwendet zusitzlichen Speicher fiir aufgesammelte Werte

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021

8

Initialisierung: i :=

A4. Sortieren |I: Mergesort

Verbinden der Teillosungen: Beispiel

a .
lo,i mid J hi

jEEE O

i mid J hi

IEIEIM

mid,i j hi

EEIIIW

m|d i hIJ

mld i h'J

EEIIIM

mid i hi

- [2Tals el -

M. Liithi, G. Réger (Universitit Basel)

Array tmp hat gleiche Grosse wie Eingabearray.
lo,j:=mid + 1, k:=lo

tmp

-
B
HoEnal
Al -
Al] -
Jalals]E)

Algorithmen und Datenstrukturen

Merge-Schritt

ali]<a[j] = tmplk] = ali]

afi]<a[j] = tmplk] = ali]

afj]<al[i] = tmp[k] = alj]

alil<alj] = tmp[k] = ali]

i>mid = tmp[k] = a[j]

4./10. Marz 2021 9 /23

A4. Sortieren |I: Mergesort

Verbinden der Teillosungen: Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12

def merge(array, tmp, lo, mid, hi):

i = 1lo
j = mid + 1
for k in range(lo, hi + 1): # k = lo,...,ht
if j > hi or (i <= mid and array[i] <= arrayl[jl):
tmp (k] = array[il]

i+4=1

else:
tmp[k] = arrayl[j]
j=t

for k in range(lo, hi + 1): # k = lo,...,ht
array[k] = tmp[k]

Auch korrekt fur lo = mid = hi

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021

Merge-Schritt

10 / 23

A4. Sortieren |I: Mergesort Merge-Schritt

Jupyter-Notebook

L
_
Jupyter
o

Jupyter-Notebook: merge_sort.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 11 /23

A4. Sortieren |I: Mergesort Top-Down-Mergesort

A4.3 Top-Down-Mergesort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 12 /23

A4. Sortieren |I: Mergesort Top-Down-Mergesort

Mergesort: Algorithmus

rekursive Top-Down-Version

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = 1o + (hi - 1lo0) // 2

1

2

3

4

5 def sort_aux(array, tmp, lo, hi):
6

7

8

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge (array, tmp, lo, mid, hi)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 13 /23

A4. Sortieren |l: Mergesort Top-Down-Mergesort

Mogliche Verbesserungen

» Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
— verwende Insertionsort wenn hi - lo klein

» Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollstandig sortiert

if array[mid] <= array[mid + 1]:
return

> Kopieren von tmp-Ergebnis in merge kostet Zeit
— tausche Rolle von array und tmp
bei jedem rekursiven Aufruf

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 14 / 23

A4. Sortieren |l: Mergesort Top-Down-Mergesort

Merge-Schritt: Korrektheit

» Invariante: Am Ende jeder Schleifeniteration ist
» tmp[k] < array[m] fiir alle i < m < mid, und
» tmp (k] < array[n] fiir alle j < n < hi.

» tmp wird von vorne nach hinten beschrieben.

» Nach letzter Schleifeniteration gilt fiir alle lo < r < s < hi,
dass tmp [r] <tmp[s] (= Bereich ist sortiert).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021

15 /

A4. Sortieren |l: Mergesort

Mergesort: Korrektheit

sort_aux:

>

>
| 4
>
>

Induktionsbeweis liber Bereichslange hi — lo

Basis hi — lo = —1: leerer Bereich ist sortiert.

Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.
Induktionshypothese: Mergesort ist korrekt fiir alle hi —lo < m

Induktionsschritt (m — 1 — m):

Mergesort macht zwei rekursive Aufrufe mit

hi —lo < m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (It. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort_aux fiir gesamten Bereich auf,

daher ist am Ende die gesamte Eingabe sortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Mirz 2021

Top-Down-Mergesort

16 / 23

A4. Sortieren |I: Mergesort Top-Down-Mergesort

Mergesort: Eigenschaften (slido)

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = 1o + (hi - 1o) // 2

1
2

3

4

5 def sort_aux(array, tmp, lo, hi):
6

7

8

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge (array, tmp, lo, mid, hi)
L
Welche der folgenden Eigenschaften hat Mergesort? ;l
In-place? Adaptiv? Stabil? a

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Mirz 2021 17 / 23

A4. Sortieren |l: Mergesort

Mergesort: Eigenschaften

» nicht in-place: verwendet zusatzlichen Speicherplatz fiir tmp
und fiir Aufrufstapel (call stack)

» Zeitbedarf: nicht adaptiv (ausser mit
Mergeabbruch-Verbesserung)
genauere Analyse: ndchste Woche

» stabil: merge prdferiert array[i],
wenn array[i] gleich array[j].

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Mirz 2021 18

Top-Down-Mergesort

/ 23

A4. Sortieren |I: Mergesort Bottom-Up-Mergesort

A4.4 Bottom-Up-Mergesort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 19 / 23

A4. Sortieren |I: Mergesort Bottom-Up-Mergesort

Bottom-Up-Version

lo=20 lo=2 lo=4 lo=16
mid =0 mid = 2 mid=4 mid =06
hi=1 hi=3 hi=5 hi=26
mid = 1 mid =5
hi=3 hi==6
lo=0
mid =3
hi=26

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 20 /23

A4. Sortieren |I: Mergesort Bottom-Up-Mergesort

Bottom-Up-Mergesort: Algorithm

iterative Bottom-Up-Version

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 21 /23

A4. Sortieren |I: Mergesort Zusammenfassung

A4.5 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 22 /23

A4. Sortieren |l: Mergesort Zusammenfassung

Zusammenfassung

» Mergesort ist ein Teile-und-Herrsche-Verfahren, das den zu
sortierenden Bereich in zwei etwa gleich grosse Bereiche teilt.

» Der Merge-Schritt fiihrt zwei bereits sortierte Teilbereiche
zusammen.

P> Mergesort ist stabil, arbeitet aber nicht in-place.

v

Die Top-Down-Variante ist ein rekursives Verfahren.

» Die Bottom-Up-Variante ist ein iteratives Verfahren.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4./10. Marz 2021 23 /23

	Mergesort
	

	Merge-Schritt
	

	Top-Down-Mergesort
	

	Bottom-Up-Mergesort
	

	Zusammenfassung
	

