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A4. Sortieren II: Mergesort Mergesort

A4.1 Mergesort
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A4. Sortieren II: Mergesort Mergesort

Mergesort: Idee

I Beobachtung: zwei bereits sortierte Sequenzen lassen sich
leicht zu einer sortierten Sequenz vereinen.

I Sequenzen mit einem oder keinem Element sind sortiert.
I Idee für längere Sequenzen:

I Teile Eingabesequenz in zwei etwa gleich grosse Teilbereiche
I Rekursiver Aufruf für beide Teilbereiche
I Füge nun sortierte Teilbereiche zusammen.

I Teile-und-Herrsche-Ansatz (divide and conquer)
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A4. Sortieren II: Mergesort Mergesort

Mergesort: Illustration

7 3 2 9 7 1 4 5

7 3 2 9 7 1 4 5

3 7 2 9 7 1 4 5

3 7 2 9 7 1 4 5

2 3 7 9 7 1 4 5

...

2 3 7 9 1 4 5 7

1 2 3 4 5 7 7 9

(Detaillierte Animation in Bildschirm-Version der Folien)
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A4. Sortieren II: Mergesort Merge-Schritt

A4.2 Merge-Schritt
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A4. Sortieren II: Mergesort Merge-Schritt

Verbinden der Teillösungen

I Indizes lo ≤ mid < hi

I Annahme: array[lo] bis array[mid] und
array[mid+1] bis array[hi] sind bereits sortiert

I Ziel: array[lo] bis array[hi] ist sortiert

I Idee: gehe parallel von vorne nach hinten durch beide
Teilbereiche und sammle das jeweils kleinere Element auf

I Verwendet zusätzlichen Speicher für aufgesammelte Werte
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A4. Sortieren II: Mergesort Merge-Schritt

Verbinden der Teillösungen: Beispiel

Array tmp hat gleiche Grösse wie Eingabearray.
Initialisierung: i := lo, j := mid + 1, k := lo

a tmp
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A4. Sortieren II: Mergesort Merge-Schritt

Verbinden der Teillösungen: Algorithmus

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Auch korrekt für lo = mid = hi
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A4. Sortieren II: Mergesort Merge-Schritt

Jupyter-Notebook

Jupyter-Notebook: merge sort.ipynb
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A4. Sortieren II: Mergesort Top-Down-Mergesort

A4.3 Top-Down-Mergesort
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A4. Sortieren II: Mergesort Top-Down-Mergesort

Mergesort: Algorithmus

rekursive Top-Down-Version

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)
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A4. Sortieren II: Mergesort Top-Down-Mergesort

Mögliche Verbesserungen

I Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
→ verwende Insertionsort wenn hi - lo klein

I Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollständig sortiert

if array[mid] <= array[mid + 1]:

return

I Kopieren von tmp-Ergebnis in merge kostet Zeit
→ tausche Rolle von array und tmp

→ bei jedem rekursiven Aufruf
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A4. Sortieren II: Mergesort Top-Down-Mergesort

Merge-Schritt: Korrektheit

I Invariante: Am Ende jeder Schleifeniteration ist
I tmp[k] ≤ array[m] für alle i ≤ m ≤ mid, und
I tmp[k] ≤ array[n] für alle j ≤ n ≤ hi.

I tmp wird von vorne nach hinten beschrieben.

I Nach letzter Schleifeniteration gilt für alle lo ≤ r < s ≤ hi,
dass tmp[r]≤tmp[s] (= Bereich ist sortiert).
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A4. Sortieren II: Mergesort Top-Down-Mergesort

Mergesort: Korrektheit

sort aux:

I Induktionsbeweis über Bereichslänge hi− lo

I Basis hi− lo = −1: leerer Bereich ist sortiert.

I Basis hi− lo = 0: Bereich mit nur einem Element ist sortiert.

I Induktionshypothese: Mergesort ist korrekt für alle hi− lo < m

I Induktionsschritt (m − 1→ m):
Mergesort macht zwei rekursive Aufrufe mit
hi− lo ≤ m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (lt. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort aux für gesamten Bereich auf,
Mergesort: daher ist am Ende die gesamte Eingabe sortiert.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 16 / 23



A4. Sortieren II: Mergesort Top-Down-Mergesort

Mergesort: Eigenschaften (slido)

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

Welche der folgenden Eigenschaften hat Mergesort?
In-place? Adaptiv? Stabil?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 17 / 23



A4. Sortieren II: Mergesort Top-Down-Mergesort

Mergesort: Eigenschaften

I nicht in-place: verwendet zusätzlichen Speicherplatz für tmp
und für Aufrufstapel (call stack)

I Zeitbedarf: nicht adaptiv (ausser mit
Mergeabbruch-Verbesserung)
genauere Analyse: nächste Woche

I stabil: merge präferiert array[i],
wenn array[i] gleich array[j].
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A4. Sortieren II: Mergesort Bottom-Up-Mergesort

A4.4 Bottom-Up-Mergesort
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A4. Sortieren II: Mergesort Bottom-Up-Mergesort

Bottom-Up-Version

0 1 2 3 4 5 6

lo = 0
mid = 0
hi = 1

lo = 2
mid = 2
hi = 3

lo = 4
mid = 4
hi = 5

lo = 6
mid = 6
hi = 6

lo = 0
mid = 1
hi = 3

lo = 4
mid = 5
hi = 6

lo = 0
mid = 3
hi = 6
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A4. Sortieren II: Mergesort Bottom-Up-Mergesort

Bottom-Up-Mergesort: Algorithm

iterative Bottom-Up-Version

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2
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A4. Sortieren II: Mergesort Zusammenfassung

A4.5 Zusammenfassung
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A4. Sortieren II: Mergesort Zusammenfassung

Zusammenfassung

I Mergesort ist ein Teile-und-Herrsche-Verfahren, das den zu
sortierenden Bereich in zwei etwa gleich grosse Bereiche teilt.

I Der Merge-Schritt führt zwei bereits sortierte Teilbereiche
zusammen.

I Mergesort ist stabil, arbeitet aber nicht in-place.

I Die Top-Down-Variante ist ein rekursives Verfahren.

I Die Bottom-Up-Variante ist ein iteratives Verfahren.
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