
Algorithmen und Datenstrukturen
A4. Sortieren II: Mergesort

Marcel Lüthi and Gabriele Röger

Universität Basel

4./10. März 2021

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 1 / 23

Algorithmen und Datenstrukturen
4./10. März 2021 — A4. Sortieren II: Mergesort

A4.1 Mergesort

A4.2 Merge-Schritt

A4.3 Top-Down-Mergesort

A4.4 Bottom-Up-Mergesort

A4.5 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 2 / 23

A4. Sortieren II: Mergesort Mergesort

A4.1 Mergesort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 3 / 23

A4. Sortieren II: Mergesort Mergesort

Sortierverfahren

Sortieren

Vergleichsbasierte
Verfahren

Selectionsort

Insertionsort

Mergesort

Minimale
Vergleichszahl

Quick Sort

Heap Sort

Nicht
vergleichsbasierte

Verfahren

Überblick und
Ausblick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 4 / 23

A4. Sortieren II: Mergesort Mergesort

Mergesort: Idee

I Beobachtung: zwei bereits sortierte Sequenzen lassen sich
leicht zu einer sortierten Sequenz vereinen.

I Sequenzen mit einem oder keinem Element sind sortiert.
I Idee für längere Sequenzen:

I Teile Eingabesequenz in zwei etwa gleich grosse Teilbereiche
I Rekursiver Aufruf für beide Teilbereiche
I Füge nun sortierte Teilbereiche zusammen.

I Teile-und-Herrsche-Ansatz (divide and conquer)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 5 / 23

A4. Sortieren II: Mergesort Mergesort

Mergesort: Illustration

7 3 2 9 7 1 4 5

7 3 2 9 7 1 4 5

3 7 2 9 7 1 4 5

3 7 2 9 7 1 4 5

2 3 7 9 7 1 4 5

...

2 3 7 9 1 4 5 7

1 2 3 4 5 7 7 9

(Detaillierte Animation in Bildschirm-Version der Folien)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 6 / 23

A4. Sortieren II: Mergesort Merge-Schritt

A4.2 Merge-Schritt

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 7 / 23

A4. Sortieren II: Mergesort Merge-Schritt

Verbinden der Teillösungen

I Indizes lo ≤ mid < hi

I Annahme: array[lo] bis array[mid] und
array[mid+1] bis array[hi] sind bereits sortiert

I Ziel: array[lo] bis array[hi] ist sortiert

I Idee: gehe parallel von vorne nach hinten durch beide
Teilbereiche und sammle das jeweils kleinere Element auf

I Verwendet zusätzlichen Speicher für aufgesammelte Werte

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 8 / 23

A4. Sortieren II: Mergesort Merge-Schritt

Verbinden der Teillösungen: Beispiel

Array tmp hat gleiche Grösse wie Eingabearray.
Initialisierung: i := lo, j := mid + 1, k := lo

a tmp

. . . 2

lo,i

4 5

mid

4

j

7

hi

.
k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4

i

5

mid

4

j

7

hi

. 2

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid,i

4

j

7

hi

. 2 4

k

. . .

a[j]<a[i] ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid,i

4 7

hi,j

. 2 4 4

k

. . .

a[i]≤a[j] ⇒ tmp[k] = a[i]

. . . 2

lo

4 5

mid

4

i

7

hi,j

. 2 4 4 5

k

. . .

i>mid ⇒ tmp[k] = a[j]

. . . 2

lo

4 5

mid

4

i

7

hi

. 2 4 4 5 7 . . .

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 9 / 23

A4. Sortieren II: Mergesort Merge-Schritt

Verbinden der Teillösungen: Algorithmus

1 def merge(array, tmp, lo, mid, hi):

2 i = lo

3 j = mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hi

5 if j > hi or (i <= mid and array[i] <= array[j]):

6 tmp[k] = array[i]

7 i += 1

8 else:

9 tmp[k] = array[j]

10 j += 1

11 for k in range(lo, hi + 1): # k = lo,...,hi

12 array[k] = tmp[k]

Auch korrekt für lo = mid = hi

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 10 / 23

A4. Sortieren II: Mergesort Merge-Schritt

Jupyter-Notebook

Jupyter-Notebook: merge sort.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 11 / 23

A4. Sortieren II: Mergesort Top-Down-Mergesort

A4.3 Top-Down-Mergesort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 12 / 23

A4. Sortieren II: Mergesort Top-Down-Mergesort

Mergesort: Algorithmus

rekursive Top-Down-Version

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 13 / 23

A4. Sortieren II: Mergesort Top-Down-Mergesort

Mögliche Verbesserungen

I Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
→ verwende Insertionsort wenn hi - lo klein

I Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollständig sortiert

if array[mid] <= array[mid + 1]:

return

I Kopieren von tmp-Ergebnis in merge kostet Zeit
→ tausche Rolle von array und tmp

→ bei jedem rekursiven Aufruf

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 14 / 23

A4. Sortieren II: Mergesort Top-Down-Mergesort

Merge-Schritt: Korrektheit

I Invariante: Am Ende jeder Schleifeniteration ist
I tmp[k] ≤ array[m] für alle i ≤ m ≤ mid, und
I tmp[k] ≤ array[n] für alle j ≤ n ≤ hi.

I tmp wird von vorne nach hinten beschrieben.

I Nach letzter Schleifeniteration gilt für alle lo ≤ r < s ≤ hi,
dass tmp[r]≤tmp[s] (= Bereich ist sortiert).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 15 / 23

A4. Sortieren II: Mergesort Top-Down-Mergesort

Mergesort: Korrektheit

sort aux:

I Induktionsbeweis über Bereichslänge hi− lo

I Basis hi− lo = −1: leerer Bereich ist sortiert.

I Basis hi− lo = 0: Bereich mit nur einem Element ist sortiert.

I Induktionshypothese: Mergesort ist korrekt für alle hi− lo < m

I Induktionsschritt (m − 1→ m):
Mergesort macht zwei rekursive Aufrufe mit
hi− lo ≤ m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (lt. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort aux für gesamten Bereich auf,
Mergesort: daher ist am Ende die gesamte Eingabe sortiert.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 16 / 23

A4. Sortieren II: Mergesort Top-Down-Mergesort

Mergesort: Eigenschaften (slido)

1 def sort(array):

2 tmp = [0] * len(array) # [0,...,0] with same size as array

3 sort_aux(array, tmp, 0, len(array) - 1)

4

5 def sort_aux(array, tmp, lo, hi):

6 if hi <= lo:

7 return

8 mid = lo + (hi - lo) // 2

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)

11 sort_aux(array, tmp, mid + 1, hi)

12 merge(array, tmp, lo, mid, hi)

Welche der folgenden Eigenschaften hat Mergesort?
In-place? Adaptiv? Stabil?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 17 / 23

A4. Sortieren II: Mergesort Top-Down-Mergesort

Mergesort: Eigenschaften

I nicht in-place: verwendet zusätzlichen Speicherplatz für tmp
und für Aufrufstapel (call stack)

I Zeitbedarf: nicht adaptiv (ausser mit
Mergeabbruch-Verbesserung)
genauere Analyse: nächste Woche

I stabil: merge präferiert array[i],
wenn array[i] gleich array[j].

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 18 / 23

A4. Sortieren II: Mergesort Bottom-Up-Mergesort

A4.4 Bottom-Up-Mergesort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 19 / 23

A4. Sortieren II: Mergesort Bottom-Up-Mergesort

Bottom-Up-Version

0 1 2 3 4 5 6

lo = 0
mid = 0
hi = 1

lo = 2
mid = 2
hi = 3

lo = 4
mid = 4
hi = 5

lo = 6
mid = 6
hi = 6

lo = 0
mid = 1
hi = 3

lo = 4
mid = 5
hi = 6

lo = 0
mid = 3
hi = 6

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 20 / 23

A4. Sortieren II: Mergesort Bottom-Up-Mergesort

Bottom-Up-Mergesort: Algorithm

iterative Bottom-Up-Version

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo = 0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)

10 merge(array, tmp, lo, mid, hi)

11 lo += 2 * length

12 length *= 2

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 21 / 23

A4. Sortieren II: Mergesort Zusammenfassung

A4.5 Zusammenfassung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 22 / 23

A4. Sortieren II: Mergesort Zusammenfassung

Zusammenfassung

I Mergesort ist ein Teile-und-Herrsche-Verfahren, das den zu
sortierenden Bereich in zwei etwa gleich grosse Bereiche teilt.

I Der Merge-Schritt führt zwei bereits sortierte Teilbereiche
zusammen.

I Mergesort ist stabil, arbeitet aber nicht in-place.

I Die Top-Down-Variante ist ein rekursives Verfahren.

I Die Bottom-Up-Variante ist ein iteratives Verfahren.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 4./10. März 2021 23 / 23

	Mergesort
	

	Merge-Schritt
	

	Top-Down-Mergesort
	

	Bottom-Up-Mergesort
	

	Zusammenfassung
	

