Algorithmen und Datenstrukturen

A3. Sortieren |; Selection- und Insertionsort

Marcel Liithi and Gabriele Roger

Universitat Basel

4. Marz 2021

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

4. Marz 2021

1/

Algorithmen und Datenstrukturen
4. Marz 2021 — AS3. Sortieren |: Selection- und Insertionsort

A3.1 Sortieralgorithmen
A3.2 Selectionsort
A3.3 Insertionsort

A3.4 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 2/27

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

A3.1 Sortieralgorithmen

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4. Marz 2021 3 /27

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

Inhalt dieser Veranstaltung

-_ Vergleichsbasierte
T Verfahren
| Komplexitats-
analyse Nicht
[Fundamentale — verg\l;alc:shbasmrte
_ Datenstrukturen erfahren
— Suchen | || Uberblick und
Ausblick
—{ Graphen |
—| Strings |

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 4 /27

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

Relevanz

Sortieren von Daten wichtig fiir viele Anwendungen, z.B.
> sortierte Darstellung (z.B. auf Webseite)
» Produkte sortiert nach Preis, Kundenbewertung, etc.
» Kontobewegungen sortiert nach Buchungsdatum
» Vorverarbeitung fiir viele effiziente Suchalgorithmen
» Wie schnell konnen Sie eine Nummer im Telefonbuch
nachschlagen? Und wenn die Eintrage nicht sortiert waren?
» Vorverarbeitung fiir viele andere Verfahren

» z.B. Kruskals Algorithmus zur Berechnung minimaler
Spannbdume von ungerichteten Graphen

Fachzeitschrift ,, Computing in Science & Engineering"
nennt Quicksort-Sortieralgorithmus als einen der
10 wichtigsten Algorithmen des 20. Jahrhunderts.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021

5/

A3. Sortieren |: Selection- und Insertionsort

Aufgabenstellung

Aufgabenstellung Sortieralgorithmen
Eingabe
» Sequenz von n Elementen ey, ..., €,
> Jedes Element e; hat Schliissel k; = key(e;)

» Ordnungsrelation < auf den Schliisseln
reflexiv: k < k
transitiv: k < k" und k' < k" = k < k"
antisymmetrisch: k < k" und k' < k = k =K

Resultat

> Sequenz der Eingabeelemente gemass
Ordungsrelation ihrer Schliissel sortiert

Notation: auch e < €’ fiir key(e) < key(e')

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Sortieralgorithmen

4. Marz 2021

6/

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

Aufgabenstellung: Beispiele

Beispiel
Eingabe: (3,6,2,3,1), key(e) = e, < auf natiirlichen Zahlen
Ausgabe: (1,2,3,3,6)

Beispiel
Eingabe: Liste aller Studierenden der Uni Basel,

key(e) = (Wohnort von e), lexikographische Ordnung
Ausgabe: Liste aller Studierenden, nach Wohnort sortiert

Bis auf Weiter_es: ganze Zahlen, key(e) = e und , kleiner gleich"
Spater (und Ubung): Umgang mit komplexen Objekten

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 7/27

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

Interessante Eigenschaften von Sortieralgorithmen

> Zeitbedarf: Wieviele Schliisselvergleiche und
Element-Vertauschungen werden durchgefiihrt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert ist.

» Platzbedarf: Wieviel Speicherplatz wird zusatzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusatzlich verbrauchter Platz ist konstant
(nicht abhangig von der Eingabegrosse).

» stabil: Reihenfolge von Elementen mit gleichem Schliissel
wird nicht verandert.

> vergleichsbasiert: Verfahren verwendet nur Vergleich von
Schliisselpaaren und Tausch zweier Elemente.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 8 /27

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

Inhalt dieser Veranstaltung

Komplexitats-

analyse Nicht
| Fundamentale | | | Verg\|/eIthshbaS|erte
_ Datenstrukturen erfahren
[Suchen | || Uberblick und
Ausblick
—{ Graphen |
—| Strings |

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 9 /27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

A3.2 Selectionsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4. Mirz 2021 10 / 27

A3. Sortieren |: Selection- und Insertionsort

Sortierverfahren

Nicht

vergleichsbasierte

Verfahren

[Selectionsort_|
_|

_|

Insertionsort |

Mergesort |

Minimale

Uberblick und
Ausblick

Vergleichszahl

—| Quick Sort |

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

_{

Heap Sort |

4. Mirz 2021

Selectionsort

11 /27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Selectionsort: Informell

01 2 3 4 5 6 7

» Finde kleinstes Element an Positionen 0,...,n—1
und tausche es an Position 0

» Finde kleinstes Element an Positionen 1,...,n—1
und tausche es an Position 1

» Finde kleinstes Element an Positionen n —2,...,n—1
und tausche es an Position n - 2

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 12 /27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # 4 =0, ..., n-2

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position % with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[i]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Miarz 2021 13 /27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Selectionsort: Beispiel

i minind. |0 1 2 3 4 5 6 7
3 729 7 1 45 Minimum wird in
01 g 3 ; g g ; :1)’ 2 g/ dunklen Eintragen
esucht.
2 5 79734 5 B
3 6 9 7 7 4 5
4 7 7 7 9 5 . .
5 5 7 9 7™\ Roter Eintrag ist
6 7 9 gefundenes Minimum.
AN

Graue Eintrage sind in richtiger Reihenfolge.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 14 /27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Selectionsort: Korrektheit

» Invariante: Eigenschaft, die wihrend der gesamten
Algorithmenlaufzeit gilt.

» Invariante 1: Zum Ende jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < j sortiert.

» Invariante 2: Zum Ende jedes Durchlaufs der dusseren Schleife
ist keines der Elemente an den Positionen </ grosser als ein
Element an einer Position > i.

» Korrektheit der Invarianten per (gemeinsamer) Induktion

» Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner
als das vorletzte.

— gesamte Eingabe sortiert

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 15 /27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Selectionsort: Eigenschaften

» in-place: zusatzlicher Speicherbedarf nicht abhangig von
Eingabegrosse

P Zeitbedarf: hangt nur von Grosse der Eingabe ab
(nicht adaptiv fiir teilsortierte Eingaben)
genauere Analyse: ndchste Woche

» nicht stabil: beim Tausch kann das Element an Position i
hinter ein gleiches Element springen, was spater nicht mehr
“repariert” wird.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Miarz 2021 16 /

27

A3. Sortieren |: Selection- und Insertionsort

Jupyter-Notebook

Selectionsort

Z Jupyter selection_sort [
Fle Edt View Insert Cel Kemel Widgets Help Trusted | Pythons ©
Selection Sort
Hier ist nochmal der Selection-Sort-Algorithmus aus der Vorlesung:
In [1]: 1 def selection_sort(array):
2 n = len(array)
3 for i in range(n - 1):
4 # print(array)
5 min_index = i
6 for j in range(i + 1, n):
7 if array[j] <= array[min index]:
8 min_index = j
9 # print("Kleinstes Element an Pos.", i, "-", len(array) - 1,
10 "ist", array[min_index])
11 # print(“Tausche es mit", array[i], “"an Pos.", 1)
12 array[i], array[min_index] = array[min_index], array[i]
Hier ein Beispielaufruf:
In [2] 1 test_array = [7,3,5,9,3]
2 selection sort(test array)
3 print(test_array)
13,3,5 7,9
4. Miarz 2021 17 / 27

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

A3. Sortieren |: Selection- und Insertionsort Insertionsort

A3.3 Insertionsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4. Mirz 2021 18 / 27

A3. Sortieren |: Selection- und Insertionsort

Sortierverfahren

M. Liithi, G. Réger (Universitit Basel)

Nicht
vergleichsbasierte
Verfahren

—| Selectionsort

—| Mergesort

Minimale

Vergleichszahl

—| Quick Sort

Uberblick und
Ausblick

Algorithmen und Datenstrukturen

—{ Heap Sort

4. Mirz 2021

Insertionsort

19 / 27

A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Informell

» Ahnlich zum Sortieren von Spielkarten auf der Hand

> Elemente werden nacheinander in bereits sortierten Bereich
am Sequenzanfang einsortiert.

» Grossere Elemente werden entsprechend nach hinten
verschoben.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Miarz 2021 20 / 27

A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Beispiel

il0 1 2 3 4 6 7

3 7 2 9 7 1 4 5
1 7
212 3 7 Graue Eintrage
3 9 “~ wurden nicht bewegt.
4 79
511 2 3 7 7 9
6 4 7 7 9
7 5 7 7 9

/ AN

Schwarze Eintrige
wurden um eins
nach rechts verschoben.

Roter Eintrag
wurde einsortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Miarz 2021 21 /27

A3. Sortieren |: Selection- und Insertionsort

Insertionsort: Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12

Insertionsort

def insertion_sort(array):

n = len(array)
for i in range(l, n): # 4 =1, ..., n - 1
move arrayl[i] to the left until it is
at the correct position.
for j in range(i, 0, -1): # j =14, ..., 1
if array[j] < array[j-1]:
not yet at final position.
swap arrayl[j] and arrayl[j-1]
array[jl, array[j-1] = array[j-1], arrayl[j]
else:
break # continue with next 1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Mirz 2021

22 /27

A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Algorithmus (etwas schneller)

Vorherige Version: meiste Zuweisungen an array[j-1] unnétig.

1 def insertion_sort(array):

2 for i in range(l, len(array)):

3 val = arrayl[i]

4 j=1i

5 while j > 0 and array[j - 1] > val:
6 array[j]l = array[j - 1]

7 j =1
8 array[j] = val

Laufzeitanalyse (spater): kein fundamentaler Unterschied
trotzdem: zu bevorzugen, wenn direkte Zuweisung moglich

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Miarz 2021 23 /27

A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Korrektheit

» Invariante 1: Zu Beginn jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

» Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grosser
oder gleich val.

» Korrektheit der Invarianten per Induktion

» Die innere Schleife verdndert die Reihenfolge der an eine
héhere Position verschobenen Elemente nicht und das nach
unten verschobene Element wird korrekt einsortiert.

» Nach letztem Schleifendurchlauf sind alle Elemente sortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 24 /27

A3. Sortieren |: Selection- und Insertionsort

Insertionsort: Eigenschaften

» in place: zusatzlicher Speicherbedarf nicht abhingig von
Eingabegrosse
» Zeitbedarf: adaptiv fiir teilsortierte Eingaben

Insertionsort

» Bei bereits sortierter Eingabe bricht innere Schleife direkt ab.

» Bei umgekehrt sortierter Eingabe wird jedes Element
schrittweise bis ganz vorne verschoben.

genauere Analyse: nachste Woche

> stabil: Element wird nur so lange nach vorne verschoben,
solange es mit echt grosserem Element getauscht wird.
— kann nicht Reihenfolge mit gleichem Element tauschen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021

25 /27

A3. Sortieren |: Selection- und Insertionsort Zusammenfassung

A3.4 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 4. Mirz 2021 26 /27

A3. Sortieren |: Selection- und Insertionsort Zusammenfassung

Zusammenfassung

» Selectionsort und Insertionsort sind zwei einfache
Sortierverfahren.

> Selectionsort baut die sortierte Sequenz von vorne auf, indem
es sukzessive ein minimales Element aus dem noch
unsortierten Bereich an das Ende des sortierten Bereichs
tauscht.

» Insertionsort betrachtet die Elemente von vorne nach hinten
und sortiert sie in den bereits sortierten Bereich am
Sequenzanfang ein.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 4. Marz 2021 27 /27

	Sortieralgorithmen
	

	Selectionsort
	

	Insertionsort
	

	Zusammenfassung
	

