
Theory of Computer Science
F1. LOOP-Computability

Gabriele Röger

University of Basel

May 27, 2020



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Overview: Course

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages X
. What is a computation?

D. Turing computability X
. What can be computed at all?

E. complexity theory X
. What can be computed efficiently?

F. more computability theory
. Other models of computability



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Introduction



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

More Computability

LOOP-computability

WHILE-computability

GOTO-computability



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP, WHILE and GOTO Programs: Basic Concepts

LOOP, WHILE and GOTO programs are structured like
programs in (simple) “traditional” programming languages

use finitely many variables from the set {x0, x1, x2, . . . }
that can take on values in N0

differ from each other in the allowed “statements”



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP Programs



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP Programs: Syntax

Definition (LOOP Program)

LOOP programs are inductively defined as follows:

xi := xj + c is a LOOP program
for every i , j , c ∈ N0 (addition)

xi := xj − c is a LOOP program
for every i , j , c ∈ N0 (modified subtraction)

If P1 and P2 are LOOP programs,
then so is P1;P2 (composition)

If P is a LOOP program, then so is
LOOP xi DO P END for every i ∈ N0 (LOOP loop)

German: LOOP-Programm, Addition,

German: modifizierte Subtraktion, Komposition, LOOP-Schleife



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

A LOOP program computes a k-ary function
f : Nk

0 → N0. The computation of f (n1, . . . , nk) works as follows:

1 Initially, the variables x1, . . . , xk hold the values n1, . . . , nk .
All other variables hold the value 0.

2 During computation, the program modifies the variables
as described on the following slides.

3 The result of the computation (f (n1, . . . , nk)) is
the value of x0 after the execution of the program.

German: P berechnet f



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj + c :

The variable xi is assigned the current value of xj plus c .

All other variables retain their value.

German: P berechnet f



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of xi := xj − c :

The variable xi is assigned the current value of xj minus c
if this value is non-negative.

Otherwise xi is assigned the value 0.

All other variables retain their value.

German: P berechnet f



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of P1; P2:

First, execute P1.
Then, execute P2 (on the modified variable values).

German: P berechnet f



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)

effect of LOOP xi DO P END:

Let m be the value of variable xi at the start of execution.

The program P is executed m times in sequence.

German: P berechnet f



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP Programs: Example

Example (LOOP program for f (x1, x2))

LOOP x1 DO
LOOP x2 DO

x0 := x0 + 1
END

END

Which (binary) function does this program compute?

Note: A LOOP-program cannot compute a non-total function.
(Why not?)



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Syntactic Sugar or Essential Feature?

We investigate the power of programming languages
and other computation formalisms.

Rich language features help when writing complex programs.

Minimalistic formalisms are useful for proving statements
over all programs.

 conflict of interest!

Idea:

Use minimalistic core for proofs.

Use syntactic sugar when writing programs.

German: syntaktischer Zucker



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Example: Syntactic Sugar

Example (syntactic sugar)

The following five new syntax constructs (with the obvious
semantics) can be simulated with the existing constructs.

xi := xj for i , j ∈ N0

xi := c for i , c ∈ N0

xi := xj + xk for i , j , k ∈ N0

IF xi 6= 0 THEN P END for i ∈ N0

IF xi = c THEN P END for i , c ∈ N0



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

WHILE Programs



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

xi := xj + c is a WHILE program
for every i , j , c ∈ N0 (addition)

xi := xj − c is a WHILE program
for every i , j , c ∈ N0 (modified subtraction)

If P1 and P2 are WHILE programs,
then so is P1;P2 (composition)

If P is a WHILE program, then so is
WHILE xi 6= 0 DO P END for every i ∈ N0 (WHILE loop)

German: WHILE-Programm, WHILE-Schleife



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)

The semantics of WHILE programs is defined
exactly as for LOOP programs.

effect of WHILE xi 6= 0 DO P END:

If xi holds the value 0, program execution finishes.

Otherwise execute P.

Repeat these steps until execution finishes
(potentially infinitely often).



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

WHILE-Program: Example

Example

WHILE x1 6= 0 DO
x1 := x1 − x2;
x0 := x0 + 1

END

What function does this program compute?



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Syntactic Sugar

As we can simulate LOOP loops from LOOP programs with
WHILE programs, we can use all syntactic sugar we have seen for
LOOP programs in WHILE programs e.g.

xi := xj for i , j ∈ N0

xi := c for i , c ∈ N0

xi := xj + xk for i , j , k ∈ N0

IF xi 6= 0 THEN P END for i ∈ N0

IF xi = c THEN P END for i , c ∈ N0



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

GOTO Programs



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

GOTO Programs: Syntax

Definition (GOTO Program)

A GOTO program is given by a finite sequence
L1 : A1, L2 : A2, . . . , Ln : An

of labels and statements.

Statements are of the following form:

xi := xj + c for every i , j , c ∈ N0 (addition)

xi := xj − c for every i , j , c ∈ N0 (modified subtraction)

HALT (end of program)

GOTO Lj for 1 ≤ j ≤ n (jump)

IF xi = c THEN GOTO Lj for i , c ∈ N0,
1 ≤ j ≤ n (conditional jump)

German: GOTO-Programm, Marken, Anweisungen, Programmende,

German: Sprung, bedingter Sprung



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

GOTO Programs: Semantics

Definition (Semantics of GOTO Programs)

Input, output and variables work exactly
as in LOOP and WHILE programs.

Addition and modified subtraction work exactly
as in LOOP and WHILE programs.

Execution begins with the statement A1.

After executing Ai , the statement Ai+1 is executed.
(If i = n, execution finishes.)

exceptions to the previous rule:

HALT stops the execution of the program.
After GOTO Lj execution continues with statement Aj .
After IF xi = c THEN GOTO Lj execution continues
with Aj if variable xi currently holds the value c .



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Comparison



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

LOOP/WHILE/GOTO-Computable Functions

Definition (LOOP-/WHILE-/GOTO-Computable)

A function f : Nk
0 → N0 is called

LOOP/WHILE/GOTO-computable
if a LOOP/WHILE/GOTO program that computes f exists.



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Result

Corollary

Let f : Nk
0 →p N0 be a function.

The following statements are equivalent:

f is Turing-computable.

f is WHILE-computable.

f is GOTO-computable.

Moreover:

Every LOOP-computable function
is Turing-/WHILE-/GOTO-computable.

The converse is not true in general.



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Summary



Introduction LOOP Programs WHILE Programs GOTO Programs Comparison Summary

Summary

Turing machines, WHILE and GOTO programs
are equally powerful.

Whenever we said “Turing-computable” or “computable” in
parts D or E, we could equally have said “WHILE-computable”
or “GOTO-computable”.

LOOP programs are strictly less powerful.


	Introduction
	

	LOOP Programs
	

	WHILE Programs
	

	GOTO Programs
	

	Comparison
	

	Summary
	


