

Theory of Computer Science

E6. Beyond NP

Gabriele Röger

University of Basel

May 25, 2020

Complexity Theory: What we already have seen

- Complexity theory investigates which problems are “easy” to solve and which ones are “hard”.
- two important problem classes:
 - P: problems that are solvable in polynomial time by “normal” computation mechanisms
 - NP: problems that are solvable in polynomial time with the help of nondeterminism
- We know that $P \subseteq NP$, but we do not know whether $P = NP$.
- Many practically relevant problems are NP-complete:
 - They belong to NP.
 - All problems in NP can be polynomially reduced to them.
- If there is an efficient algorithm for one NP-complete problem, then there are efficient algorithms for all problems in NP.

coNP
●○○○

Time and Space Complexity
○○○○

Polynomial Hierarchy
○○○○

Counting
○○

End of Part E
○○

coNP

Complexity Class coNP

Definition (coNP)

coNP is the set of all languages L for which $\bar{L} \in \text{NP}$.

Example: The complement of SAT is in coNP.

Hardness and Completeness

Definition (Hardness and Completeness)

Let C be a complexity class.

A problem Y is called **C -hard** if $X \leq_p Y$ for **all** problems $X \in C$.

Y is called **C -complete** if $Y \in C$ and Y is C -hard.

Example (TAUTOLOGY)

The following problem **TAUTOLOGY** is coNP-complete:

Given: a propositional logic formula φ

Question: Is φ valid?

Known Results and Open Questions

Open

- $NP \stackrel{?}{=} coNP$

Known

- $P \subseteq coNP$
- If X is NP-complete then \bar{L} is coNP-complete.
- If $NP \neq coNP$ then $P \neq NP$.
- If a coNP-complete problem is in NP, then $NP = coNP$.
- If a coNP-complete problem is in P, then $P = coNP = NP$.

Time and Space Complexity

Time

Definition (Reminder: Accepting a Language in Time f)

Let M be a DTM or NTM with input alphabet Σ ,
 $L \subseteq \Sigma^*$ a language and $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ a function.

M accepts L in time f if:

- ① for all words $w \in L$: M accepts w in time $f(|w|)$
- ② for all words $w \notin L$: M does not accept w

- **TIME(f)**: all languages accepted by a **DTM** in time f .
- **NTIME(f)**: all languages accepted by a **NTM** in time f .
- $P = \bigcup_{k \in \mathbb{N}} \text{TIME}(n^k)$
- $NP = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k)$

Space

- Analogously: A TM accepts a language L in **space f** if every word $w \in L$ gets accepted using at most of $f(|w|)$ space besides its input on the tape and no $w \notin L$ gets accepted.
- **SPACE(f)**: all languages accepted by a **DTM** in space f .
- **NSPACE(f)**: all languages accepted by a **NTM** in space f .

Important Complexity Classes Beyond NP

- $\text{PSPACE} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k)$
- $\text{NPSPACE} = \bigcup_{k \in \mathbb{N}} \text{NSPACE}(n^k)$
- $\text{EXPTIME} = \bigcup_{k \in \mathbb{N}} \text{TIME}(2^{n^k})$
- $\text{EXPSPACE} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(2^{n^k})$

Some known results:

- $\text{PSPACE} = \text{NPSPACE}$ (from Savitch's theorem)
- $\text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{EXPSPACE}$
(at least one relationship strict)
- $\text{P} \neq \text{EXPTIME}$, $\text{PSPACE} \neq \text{EXPSPACE}$
- $\text{P} \subseteq \text{NP} \subseteq \text{PSPACE}$

Polynomial Hierarchy

Oracle Machines

An **oracle machine** is like a Turing machine that has access to an **oracle** which can solve some decision problem in constant time.

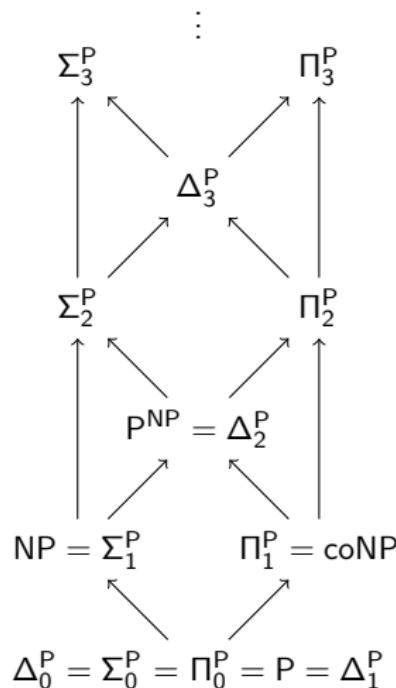
Example oracle classes:

- $P^{NP} = \{L \mid L \text{ can get accepted in polynomial time by a DTM with an oracle that decides some problem in } NP\}$
- $NP^{NP} = \{L \mid L \text{ can get accepted in pol. time by a NTM with an oracle deciding some problem in } NP\}$

Polynomial Hierarchy

Inductively defined:

- $\Delta_0^P := \Sigma_0^P := \Pi_0^P := P$
- $\Delta_{i+1}^P := P^{\Sigma_i^P}$
- $\Sigma_{i+1}^P := NP^{\Sigma_i^P}$
- $\Pi_{i+1}^P := coNP^{\Sigma_i^P}$
- $PH := \bigcup_k \Sigma_k^P$



Polynomial Hierarchy: Results

- $\text{PH} \subseteq \text{PSPACE}$ ($\text{PH} \stackrel{?}{=} \text{PSPACE}$ is open)
- There are complete problems for each level.
- If there is a PH -complete problem, then the polynomial hierarchy collapses to some finite level.
- If $\text{P} = \text{NP}$, the polynomial hierarchy collapses to the first level.

Counting

#P

Complexity class **#P**

- Set of functions $f : \{0, 1\}^* \rightarrow \mathbb{N}_0$, where $f(n)$ is the number of accepting paths of a polynomial-time NTM

Example (#SAT)

The following problem **#SAT** is **#P**-complete:

Given: a propositional logic formula φ

Question: How many models does φ have?

coNP
oooo

Time and Space Complexity
oooo

Polynomial Hierarchy
oooo

Counting
oo

End of Part E
●○

End of Part E

What's Next?

contents of this course:

- A. **background ✓**
 - ▷ mathematical foundations and proof techniques
- B. **logic ✓**
 - ▷ How can knowledge be represented?
 - How can reasoning be automated?
- C. **automata theory and formal languages ✓**
 - ▷ What is a computation?
- D. **Turing computability ✓**
 - ▷ What can be computed at all?
- E. **complexity theory**
 - ▷ What can be computed efficiently?
- F. **more computability theory**
 - ▷ Other models of computability

What's Next?

contents of this course:

- A. **background ✓**
 - ▷ mathematical foundations and proof techniques
- B. **logic ✓**
 - ▷ How can knowledge be represented?
 - How can reasoning be automated?
- C. **automata theory and formal languages ✓**
 - ▷ What is a computation?
- D. **Turing computability ✓**
 - ▷ What can be computed at all?
- E. **complexity theory ✓**
 - ▷ What can be computed efficiently?
- F. **more computability theory**
 - ▷ Other models of computability