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CLIQUE

Definition (CLIQUE)

The problem CLIQUE is defined as follows:

Given: undirected graph G = (V, E), number K € Ny

Question: Does G have a clique of size at least K,
i.e., a set of vertices C C V with |C| > K
and {u,v} € E for all u,v € C with u # v?

German: Clique
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CLIQUE is NP-Complete (1)

Theorem (CLIQUE is NP-Complete)
CLIQUE is NP-complete.
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CLIQUE is NP-Complete (2)

CLIQUE € NP: guess and check.
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CLIQUE is NP-Complete (2)

CLIQUE € NP: guess and check.
CLIQUE is NP-hard: We show 3SAT <, CLIQUE.
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CLIQUE is NP-Complete (2)

CLIQUE € NP: guess and check.
CLIQUE is NP-hard: We show 3SAT <, CLIQUE.

m We are given a 3-CNF formula ¢, and we may assume
that each clause has exactly three literals.

® In polynomial time, we must construct
a graph G = (V, E) and a number K such that:
G has a clique of size at least K iff ¢ is satisfiable.
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CLIQUE is NP-Complete (2)

Summary

CLIQUE € NP: guess and check.
CLIQUE is NP-hard: We show 3SAT <, CLIQUE.

m We are given a 3-CNF formula ¢, and we may assume
that each clause has exactly three literals.

® In polynomial time, we must construct
a graph G = (V, E) and a number K such that:
G has a clique of size at least K iff ¢ is satisfiable.

~ construction of V, E, K on the following slides.
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CLIQUE is NP-Complete (3)

Proof (continued).
Let m be the number of clauses in .

Let ¢;; the j-th literal in clause /.
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CLIQUE is NP-Complete (3)

Proof (continued).

Let m be the number of clauses in .
Let ¢;; the j-th literal in clause /.
Define V, E, K as follows:
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CLIQUE is NP-Complete (3)

Proof (continued).

Let m be the number of clauses in .
Let ¢;; the j-th literal in clause /.
Define V, E, K as follows:
mV={{0)]|1<i<m1<j<3}
~> a vertex for every literal of every clause
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CLIQUE is NP-Complete (3)

Proof (continued).

Let m be the number of clauses in .
Let ¢;; the j-th literal in clause /.
Define V, E, K as follows:
mV={{0)]|1<i<m1<j<3}
~> a vertex for every literal of every clause

m E contains edge between (i, ) and (/) if and only if

m j # i’ ~ belong to different clauses, and
m {j and £;;j are not complementary literals
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CLIQUE is NP-Complete (3)

Proof (continued).

Let m be the number of clauses in .
Let ¢;; the j-th literal in clause /.
Define V, E, K as follows:
mV={{0)]|1<i<m1<j<3}
~> a vertex for every literal of every clause

m E contains edge between (i, ) and (/) if and only if

m j # i’ ~ belong to different clauses, and
m {j and £;;j are not complementary literals

B K=m
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CLIQUE is NP-Complete (3)

Proof (continued).

Let m be the number of clauses in .
Let ¢;; the j-th literal in clause /.
Define V, E, K as follows:
mV={{0)]|1<i<m1<j<3}
~> a vertex for every literal of every clause

m E contains edge between (i, ) and (/) if and only if

m j # i’ ~ belong to different clauses, and
m {j and £;;j are not complementary literals

B K=m

~ obviously polynomially computable
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CLIQUE is NP-Complete (3)

Proof (continued).
Let m be the number of clauses in .
Let ¢;; the j-th literal in clause /.
Define V, E, K as follows:
mV={{0)]|1<i<m1<j<3}
~> a vertex for every literal of every clause

m E contains edge between (i, ) and (/) if and only if

m j # i’ ~ belong to different clauses, and
m {j and £;;j are not complementary literals

EK=m
~ obviously polynomially computable

to show: reduction property
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CLIQUE is NP-Complete (4)

Proof (continued).

(=): If ¢ is satisfiable, then (V, E) has clique of size at least K:
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CLIQUE is NP-Complete (4)

Proof (continued).
(=): If ¢ is satisfiable, then (V, E) has clique of size at least K:
m Given a satisfying variable assignment choose a vertex
corresponding to a satisfied literal in each clause.
m The chosen K vertices are all connected with each other
and hence form a clique of size K.
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CLIQUE is NP-Complete (5)

Proof (continued).

(<): If (V, E) has a clique of size at least K, then ¢ is satisfiable:
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CLIQUE is NP-Complete (5)

Proof (continued).

(<): If (V, E) has a clique of size at least K, then ¢ is satisfiable:
m Consider a given clique C of size at least K.

m The vertices in C must all correspond to different clauses
(vertices in the same clause are not connected by edges).

~ exactly one vertex per clause is included in C

m Two vertices in C never correspond to complementary literals
X and =X (due to the way we defined the edges).
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CLIQUE is NP-Complete (5)

Proof (continued).

(<): If (V, E) has a clique of size at least K, then ¢ is satisfiable:
m Consider a given clique C of size at least K.

m The vertices in C must all correspond to different clauses
(vertices in the same clause are not connected by edges).

~ exactly one vertex per clause is included in C

m Two vertices in C never correspond to complementary literals
X and =X (due to the way we defined the edges).

If a vertex corresp. to X was chosen, map X to 1 (true).
If a vertex corresp. to =X was chosen, map X to 0 (false).

If neither was chosen, arbitrarily map X to 0 or 1.

i H H B

satisfying assignment
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INDSET

Definition (INDSET)

The problem INDSET is defined as follows:

Given: undirected graph G = (V, E), number K € Ny
Question: Does G have an independent set of size at least K,
i.e., a set of vertices | C V with |/| > K

and {u,v} ¢ E for all u,v € | with u # v?

German: unabhangige Menge
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INDSET is NP-Complete (1)

Theorem (INDSET is NP-Complete)

INDSET is NP-complete.
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INDSET is NP-Complete (2)

INDSET € NP: guess and check.
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INDSET is NP-Complete (2)

INDSET € NP: guess and check.

INDSET is NP-hard: We show CLIQUE <, INDSET.
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INDSET is NP-Complete (2)

Proof.
INDSET € NP: guess and check.
INDSET is NP-hard: We show CLIQUE <, INDSET.

We describe a polynomial reduction f.
Let (G, K) with G = (V, E) be the given input for CLIQUE.
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INDSET is NP-Complete (2)

Proof.
INDSET € NP: guess and check.

INDSET is NP-hard: We show CLIQUE <, INDSET.

We describe a polynomial reduction f.

Let (G, K) with G = (V, E) be the given input for CLIQUE.
Then f((G, K)) is the INDSET instance (G, K), where

G = <V,E>_and E:={{u,v} CV]|u+#v,{uv}¢E}.
(This graph G is called the complement graph of G.)
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INDSET is NP-Complete (2)

Proof.
INDSET € NP: guess and check.

INDSET is NP-hard: We show CLIQUE <, INDSET.

We describe a polynomial reduction f.

Let (G, K) with G = (V, E) be the given input for CLIQUE.
Then f((G, K)) is the INDSET instance (G, K), where

G = <V,E>_and E:={{u,v} CV]|u+#v,{uv}¢E}.
(This graph G is called the complement graph of G.)

Clearly f can be computed in polynomial time.
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INDSET is NP-Complete (3)

Proof (continued).
We have:

((V,E),K) € CLIQUE
iff there exists a set V' C V with |V/| > K
and {u,v} € E for all u,v € V' with u # v
iff there exists a set V' C V with |V/| > K
and {u,v} ¢ E for all u,v € V' with u # v
ifft ((V,E),K) € INDSET
iff  f(((V,E),K)) € INDSET

and hence f is a reduction. O
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VERTEXCOVER

Definition (VERTEXCOVER)

The problem VERTEXCOVER is defined as follows:

Given: undirected graph G = (V, E), number K € Ny
Question: Does G have a vertex cover of size at most K,

i.e., a set of vertices C C V with |C| < K and {u,v} N C # ()
for all {u,v} € E?

German: Knotenuberdeckung
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VERTEXCOVER is NP-Complete (1)

Theorem (VERTEXCOVER is NP-Complete)

VERTEXCOVER is NP-complete.
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VERTEXCOVER is NP-Complete (2)

VERTEXCOVER € NP: guess and check.
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VERTEXCOVER is NP-Complete (2)

Proof.
VERTEXCOVER € NP: guess and check.

VERTEXCOVER is NP-hard:
We show INDSET <, VERTEXCOVER.
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VERTEXCOVER is NP-Complete (2)

Proof.
VERTEXCOVER € NP: guess and check.

VERTEXCOVER is NP-hard:
We show INDSET <, VERTEXCOVER.

We describe a polynomial reduction f.
Let (G, K) with G = (V, E) be the given input for INDSET.
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VERTEXCOVER is NP-Complete (2)

Proof.
VERTEXCOVER € NP: guess and check.

VERTEXCOVER is NP-hard:
We show INDSET <, VERTEXCOVER.

We describe a polynomial reduction f.
Let (G, K) with G = (V, E) be the given input for INDSET.

Then f((G,K)) := (G, |V| - K).
This can clearly be computed in polynomial time.
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VERTEXCOVER is NP-Complete (3)

Proof (continued).

For vertex set V' C V, we write V/ for its complement V \ V'
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VERTEXCOVER is NP-Complete (3)

Proof (continued).

For vertex set V' C V, we write V/ for its complement V \ V'

Observation: a set of vertices is a vertex cover
iff its complement is an independent set.
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VERTEXCOVER is NP-Complete (3)

Proof (continued).

For vertex set V' C V, we write V/ for its complement V \ V'

Observation: a set of vertices is a vertex cover
iff its complement is an independent set.

We thus have:

((V,E),K) € INDSET

iff  (V, E) has an independent set / with |/| > K
iff  (V,E) has a vertex cover C with |C| > K

iff  (V, E) has a vertex cover C with |C| < |V| - K
iff  ((V,E),|V| — K) € VERTEXCOVER

iff  f({((V,E),K)) € VERTEXCOVER

and hence f is a reduction. ]
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Routing Problems
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DIRHAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: DIRHAMILTONCYCLE)

The problem DIRHAMILTONCYCLE is defined as follows:

Given: directed graph G = (V, E)
Question: Does G contain a Hamilton cycle?
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DIRHAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: DIRHAMILTONCYCLE)

The problem DIRHAMILTONCYCLE is defined as follows:

Given: directed graph G = (V, E)
Question: Does G contain a Hamilton cycle?

DIRHAMILTONCYCLE is NP-complete. l
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DIRHAMILTONCYCLE is NP-Complete (2)

DirHAMILTONCYCLE € NP: guess and check.
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DIRHAMILTONCYCLE is NP-Complete (2)

Proof.
DirHAMILTONCYCLE € NP: guess and check.

DIRHAMILTONCYCLE is NP-hard:
We show 3SAT <, DIRHAMILTONCYCLE.
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DIRHAMILTONCYCLE is NP-Complete (2)

Proof.
DirHAMILTONCYCLE € NP: guess and check.

DIRHAMILTONCYCLE is NP-hard:
We show 3SAT <, DIRHAMILTONCYCLE.

m We are given a 3-CNF formula ¢ where each clause contains
exactly three literals and no clause contains duplicated literals.

m We must, in polynomial time, construct
a directed graph G = (V, E) such that:
G contains a Hamilton cycle iff ¢ is satisfiable.

m construction of (V, E) on the following slides
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DIRHAMILTONCYCLE is NP-Complete (3)

Proof (continued).
m Let Xi,..., X, be the propositional variables in .
m Let ¢1,...,cm be the clauses of ¢ with ¢; = (£j1 V £ia V ¢;3).

m Construct a graph with 6m + n vertices
(described on the following slides).
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DIRHAMILTONCYCLE is NP-Complete (4)

Proof (continued).

m For every variable Xj, add vertex x;
with 2 incoming and 2 outgoing edges:

m For every clause ¢;, add the subgraph C; with 6 vertices:

m We describe later how to connect these parts.
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DIRHAMILTONCYCLE is NP-Complete (5)

Proof (continued).
Let m be a Hamilton cycle of the total graph.
m Whenever 7 enters subgraph C; from one of its “entrances”,
it must leave via the corresponding “exit”:
(a— A b— B, c — ().
Otherwise, 7 cannot be a Hamilton cycle.
m Hamilton cycles can behave in the following ways

with regard to C;:
m 7 passes through C; once (from any entrance)
m 7 passes through C; twice (from any two entrances)
m 7 passes through C; three times (once from every entrance)
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DIRHAMILTONCYCLE is NP-Complete (6)

Proof (continued).

Connect the “open ends” in the graph as follows:

m |dentify entrances/exits of the clause subgraph C;
with the three literals in clause ¢;.

m One exit of x; is positive, the other one is negative.

m For the positive exit, determine the clauses
in which the positive literal X; occurs:

m Connect the positive exit of x; with the X;-entrance
of the first such clause graph.

m Connect the Xj-exit of this clause graph with the Xj-entrance
of the second such clause graph, and so on.

m Connect the X;-exit of the last such clause graph
with the positive entrance of x;11 (or xy if i = n).

m analogously for the negative exit of x; and the literal =X
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DIRHAMILTONCYCLE is NP-Complete (7)

Proof (continued).
The construction is polynomial and is a reduction:
(=): construct a Hamilton cycle from a satisfying assignment

m Given a satisfying assignment Z, construct a Hamilton cycle
that leaves x; through the positive exit if Z(X;) is true
and by the negative exit if Z(X;) is false.

m Afterwards, we visit all Cj-subgraphs for clauses
that are satisfied by this literal.

m In total, we visit each Cj-subgraph 1-3 times.

Summary




Routing Problems
000000000e000000

DIRHAMILTONCYCLE is NP-Complete (8)

Proof (continued).

(«<): construct a satisfying assignment from a Hamilton cycle
m A Hamilton cycle visits every vertex x;
and leaves it by the positive or negative exit.

m Map X; to true or false depending on which exit
is used to leave x;.

m Because the cycle must traverse each Cj-subgraph
at least once (otherwise it is not a Hamilton cycle),
this results in a satisfying assignment. (Details omitted.)
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HAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: HAMILTONCYCLE)

The problem HAMILTONCYCLE is defined as follows:

Given: undirected graph G = (V, E)
Question: Does G contain a Hamilton cycle?
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HAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: HAMILTONCYCLE)

The problem HAMILTONCYCLE is defined as follows:

Given: undirected graph G = (V, E)
Question: Does G contain a Hamilton cycle?

HAMILTONCYCLE is NP-complete. l
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HAMILTONCYCLE is NP-Complete (2)

Proof sketch.

HamirroNCycLE € NP: guess and check.
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HAMILTONCYCLE is NP-Complete (2)

Proof sketch.
HamirroNCycLE € NP: guess and check.

HAMILTONCYCLE is NP-hard: We show
DIRHAMILTONCYCLE <, HAMILTONCYCLE.




Graph Pro 1S Routing Problems

000000000000 e000

HAMILTONCYCLE is NP-Complete (2)

Proof sketch.
HamirroNCycLE € NP: guess and check.

HAMILTONCYCLE is NP-hard: We show
DIRHAMILTONCYCLE <, HAMILTONCYCLE.

Basic building block of the reduction:

L = H—O-Cx
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HAMILTONCYCLE <, TSP
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TSP is NP-Complete (1)

Definition (Reminder: TSP)

TSP (traveling salesperson problem) is the following
decision problem:

m Given: finite set S # () of cities, symmetric cost function
cost: S xS — Ny, cost bound K € Ng
m Question: Is there a tour with total cost at most K, i.e.,

a permutation (si, ..., sp) of the cities with
27:_11 cost(s;, si+1) + cost(sp, s1) < K?

German: Problem der/des Handlungsreisenden

TSP is NP-complete. I
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TSP is NP-Complete (2)

TSP € NP: guess and check.

TSP is NP-hard: We showed HAMILTONCYCLE <, TSP
in Chapter E2. O
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Summary

m In this chapter we showed NP-completeness of
m three classical graph problems:
CLIQUE, INDSET, VERTEXCOVER
m three classical routing problems:
DirRHAMILTONCYCLE, HAMILTONCYCLE, TSP
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