Theory of Computer Science
E2. P, NP and Polynomial Reductions

Gabriele Roger
University of Basel

May 11, 2020



P and NP
00000000

P and NP



P and NP
0e000000

Course QOverview

—{ Background ‘
_{ Boge ‘ —{ Nondeterminism |
|

— P, NP |

—{ Polynomial Reductions ‘

—{ Automata Theory

—{ Turing Computability ‘

-—{ Cook-Levin Theorem |

—{ More Computability ‘ —{ NP-complete Problems‘




P and NP
0e000000

Course QOverview

_|

Background

_|

—| Automata Theory

|
Logic |
|

% Turing Computability|

_|
g A

—I Polynomial Reductions |

Nondeterminism |

—| Cook-Levin Theorem |

—| More Computability |

—I NP-complete Problems |




P and NP
00®00000

Accepting a Word in Time n

Definition (Accepting a Word in Time n)

Let M be a DTM or NTM with input alphabet ¥,
w € 2* a word and n € Ny.

M accepts w in time n if there is a sequence of configurations
c, - - .,k with k < n, where:

m (g is the start configuration for w,

mcohbaoalb---Fc, and

m ¢ is an end configuration.

German: M akzeptiert w in Zeit n



P and NP
000@0000

NP-Hardness and NP-Completeness

Accepting a Language in Time f

Definition (Accepting a Language in Time f)

Let M be a DTM or NTM with input alphabet %,

L C ¥* a language and f : Ng — Ny a function.

M accepts L in time f if:
@ for all words w € L: M accepts w in time f(|w|)
@ for all words w ¢ L: M does not accept w

Summar

German: M akzeptiert L in Zeit f



P and NP olynomial Reductions NP-Hardness and NP-Completeness Summar

[e]e]e]e] lelele)

P and NP

Definition (P and NP)

P is the set of all languages L for which a DTM M
and a polynomial p exist such that M accepts L in time p.

NP is the set of all languages L for which an NTM M
and a polynomial p exist such that M accepts L in time p.




P and NP s \ ardness and NP-Completeness

00000e00

P and NP: Remarks

m Sets of languages like P and NP that are defined
in terms of computation time of TMs
(or other computation models) are called complexity classes.

= We know that P C NP. (Why?)

m Whether the converse is also true is an open question:
this is the famous P-NP problem.

German: Komplexitatsklassen, P-NP-Problem



P and NP s ardness and NP-Completeness
[e]e]e]ele]e] o] )

Example: DIRHAMILTONCYCLE € NP

Example (DIRHAMILTONCYCLE € NP)

The nondeterministic algorithm of Chapter E1 solves the problem
and can be implemented on an NTM in polynomial time.

m Is DIRHAMILTONCYCLE € P also true?
m The answer is unknown.

m So far, only exponential deterministic algorithms
for the problem are known.



P and NP ons HF H ardness and NP-Completeness

Summar

0000000

Simulation of NTMs with DTMs

m Unlike DTMs, NTMs are not a realistic computation model:

they cannot be directly implemented on computers.

m But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.



P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary
0000000 o} 0000 00

Simulation of NTMs with DTMs

m Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

m But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

More specifically:

m Let M be an NTM that accepts language L in time f,
where f(n) > n for all n € Np.

m Then we can specify a DTM M’ that accepts L in time f/,
where f(n) = 20(f(m),
m without proof

(cf. “Introduction to the Theory of Computation”
by Michael Sipser (3rd edition), Theorem 7.11)



Polynomial Reductions
©000000000000

Polynomial Reductions



Polynomial Reductions
0®00000000000

Course QOverview

_|

Background

_|

_|

Nondeterminism |

|
Logic |
|

—| Automata Theory

% Turing Computability|

_I
T

—| Cook-Levin Theorem |

P, NP |

—| More Computability |

—I NP-complete Problems |




Polynomial Reductions rdness and NP-Completeness

00@0000000000

Polynomial Reductions: |dea

m Reductions are a common and powerful concept in computer
science. We know them from Part D.

m The basic idea is that we solve a new problem by reducing it
to a known problem.



Polynomial Reductions ardness and NP-Completeness

00@0000000000

Polynomial Reductions: |dea

m Reductions are a common and powerful concept in computer
science. We know them from Part D.

m The basic idea is that we solve a new problem by reducing it
to a known problem.

m In complexity theory we want to use reductions
that allow us to prove statements of the following kind:
Problem A can be solved efficiently
if problem B can be solved efficiently.

m For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).



Polynomial Reductions NP-Hardness and NP-Completeness

000@000000000

Polynomial Reductions

Definition (Polynomial Reduction)
Let AC X* and B C I'* be decision problems.
We say that A can be polynomially reduced to B,
written A <, B, if there is a function f : ¥* — I'* such that:
m f can be computed in polynomial time by a DTM
m i.e., there is a polynomial p and a DTM M such that M
computes f(w) in at most p(|w|) steps given input w € *
m f reduces A to B
mie, forallweX*: weAiff f(w)eB

f is called a polynomial reduction from A to B

German: A polynomiell auf B reduzierbar,
polynomielle Reduktion von A auf B



Polynomial Reductions \ ardness and NP-Completeness

0O000@00000000

Polynomial Reductions: Remarks

m Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).
m In practice, of course we do not have to specify a DTM for f:

it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.



Polynomial Reductions ardness and NP-Completeness

0O0000e0000000

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)

HaMiLTONCYCLE is the following decision problem:
m Given: undirected graph G = (V,E)

m Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)

A Hamilton cycle of G is a sequence of vertices in V,
T = (o, ..., Vn), with the following properties:

m 7 is a path: there is an edge from v; to vjy; forall 0 </ < n
m 7isacycle: vg=v,
m 7 is simple: v; # v; for all i # j with i,j <n

m 7 is Hamiltonian: all nodes of V are included in w




Polynomial Reductions ardness and NP-Completeness

0000008000000

Polynomial Reductions: Example (2)

Definition (TSP)
TSP (traveling salesperson problem) is the following
decision problem:

m Given: finite set S # () of cities, symmetric cost function
cost: S x S — Ny, cost bound K € Ny

m Question: Is there a tour with total cost at most K, i.e.,
a permutation (si, ..., s,) of the cities with
S =L cost(s;, si1) + cost(sp, 51) < K?

German: Problem der/des Handlungsreisenden



Polynomial Reductions
0000000@00000

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE <, TSP)

HamiLTONCYCLE <, TSP.

~~ blackboard OJ I




P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

[ J 0000000080000

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)

Let A, B and C decision problems.
Q@ IfA<,Band B P, then Ac P.
Q@ IfA<, B and B € NP, then A € NP.
Q@ IfA<,Band A¢ P, then B ¢ P.
Q IfA<, Band A¢ NP, then B ¢ NP.
Q@ IfA<,Band B <, C, then A<, C.




Polynomial Reductions NP-Hardness and NP-Completeness

000000000 e000

Properties of Polynomial Reductions (2)

Proof.
for 1.

We must show that there is a DTM accepting A
in polynomial time.

We know:
m There is a DTM Mg that accepts B in time p,
where p is a polynomial.

m There is a DTM My that computes a reduction from A to B
in time g, where g is a polynomial.




Polynomial Reductions NP-Hardness and NP-Completeness Summary

0000000000800

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like M¢, and then
(after My stops) behaves like Mg on the output of M.
M accepts A:

m M behaves on input w as Mg does on input f(w),
so it accepts w if and only if f(w) € B.

m Because f is a reduction, w € A iff f(w) € B.




P and NP Polynomial Reductions NP-Hardness and NP-Completeness

Summary

[ o 0000000000080

Properties of Polynomial Reductions (4)

Proof (continued).

Computation time of M on input w:
m first Mr runs on input w: < g(|w|) steps
m then Mg runs on input f(w): < p(|f(w)]|) steps
m |f(w)| < |w|+ q(Jw|) because in g(|w]) steps,
My can write at most g(|w|) additional symbols onto the tape

~ total computation time < g(|w|) + p(|f(w)])
< q(lw]) + p(jw| + q(|w]))
~ this is polynomial in |w| ~~ A € P.




Polynomial Reductions NP-Hardness and NP-Completeness Summar

000000000000 e

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that Mg and M are NTMs




Polynomial Reductions NP-Hardness and NP-Completeness

000000000000 e

Properties of Polynomial Reductions (5)

Proof (continued).
for 2.:
analogous to 1., only that Mg and M are NTMs

of 3.4+4.:
equivalent formulations of 1.4-2. (contraposition)




Polynomial Reductions NP-Hardness and NP-Completeness

000000000000 e

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:

analogous to 1., only that Mg and M are NTMs
of 3.+4.:

equivalent formulations of 1.4-2. (contraposition)
of 5.:

Let A <, B with reduction f and B <, C with reduction g.
Then g o f is a reduction of A to C.

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1. O

v




NP-Hardness and NP-Completeness



NP-Hardness and NP-Completeness
0000

Course QOverview

_|

Background

_|

—| Automata Theory

|
Logic |
|

% Turing Computability|

_|

Nondeterminism |

—| Cook-Levin Theorem |

—| More Computability |

—I NP-complete Problems |




Polynomial Reductions NP-Hardness and NP-Completeness

Ocoeo

NP-Hardness and NP- Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.
B is called NP-hard if A <, B for all problems A € NP.
B is called NP-complete if B € NP and B is NP-hard.

German: NP-hart (selten: NP-schwer), NP-vollstandig



NP-Hardness and NP-Completeness

Summar

oooe

NP-Complete Problems: Meaning

m NP-hard problems are “at least as difficult”
as all problems in NP.

m NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.



P and NP Poly

NP-Hardness and NP-Completeness Summary
oooe 00

NP-Complete Problems: Meaning

NP-hard problems are “at least as difficult”
as all problems in NP.

NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

If A € P for any NP-complete problem, then P = NP. (Why?)

m That means that either there are efficient algorithms
for all NP-complete problems or for none of them.



P and NP Poly

NP-Hardness and NP-Completeness Summary
oooe 00

NP-Complete Problems: Meaning

m NP-hard problems are “at least as difficult”
as all problems in NP.

m NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

m If A € P for any NP-complete problem, then P = NP. (Why?)

m That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

m Do NP-complete problems actually exist?



[ Je]

Summary



Polynomial Reductions NP-Hardness and NP-Completeness Summary

oe

Summary

P: languages accepted by DTMs in polynomial time
m NP: languages accepted by NTMs in polynomial time

m polynomial reductions: A <, B if
there is a total function f computable in polynomial time,
such that for all words w: w € Aiff f(w) € B

A <, B implies that A is “at most as difficult” as B
polynomial reductions are transitive

NP-hard problems B: A <, B for all A€ NP
NP-complete problems B: B € NP and B is NP-hard



	P and NP
	

	Polynomial Reductions
	

	NP-Hardness and NP-Completeness
	

	Summary
	


