
Theory of Computer Science
E2. P, NP and Polynomial Reductions

Gabriele Röger

University of Basel

May 11, 2020

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

P and NP

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Accepting a Word in Time n

Definition (Accepting a Word in Time n)

Let M be a DTM or NTM with input alphabet Σ,
w ∈ Σ∗ a word and n ∈ N0.

M accepts w in time n if there is a sequence of configurations
c0, . . . , ck with k ≤ n, where:

c0 is the start configuration for w ,

c0 ` c1 ` · · · ` ck , and

ck is an end configuration.

German: M akzeptiert w in Zeit n

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Accepting a Language in Time f

Definition (Accepting a Language in Time f)

Let M be a DTM or NTM with input alphabet Σ,
L ⊆ Σ∗ a language and f : N0 → N0 a function.

M accepts L in time f if:

1 for all words w ∈ L: M accepts w in time f (|w |)
2 for all words w /∈ L: M does not accept w

German: M akzeptiert L in Zeit f

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

P and NP

Definition (P and NP)

P is the set of all languages L for which a DTM M
and a polynomial p exist such that M accepts L in time p.

NP is the set of all languages L for which an NTM M
and a polynomial p exist such that M accepts L in time p.

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

P and NP: Remarks

Sets of languages like P and NP that are defined
in terms of computation time of TMs
(or other computation models) are called complexity classes.

We know that P ⊆ NP. (Why?)

Whether the converse is also true is an open question:
this is the famous P-NP problem.

German: Komplexitätsklassen, P-NP-Problem

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Example: DirHamiltonCycle ∈ NP

Example (DirHamiltonCycle ∈ NP)

The nondeterministic algorithm of Chapter E1 solves the problem
and can be implemented on an NTM in polynomial time.

Is DirHamiltonCycle ∈ P also true?

The answer is unknown.

So far, only exponential deterministic algorithms
for the problem are known.

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Simulation of NTMs with DTMs

Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

More specifically:

Let M be an NTM that accepts language L in time f ,
where f (n) ≥ n for all n ∈ N0.

Then we can specify a DTM M ′ that accepts L in time f ′,
where f ′(n) = 2O(f (n)).

without proof
(cf. “Introduction to the Theory of Computation”
by Michael Sipser (3rd edition), Theorem 7.11)

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Simulation of NTMs with DTMs

Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

More specifically:

Let M be an NTM that accepts language L in time f ,
where f (n) ≥ n for all n ∈ N0.

Then we can specify a DTM M ′ that accepts L in time f ′,
where f ′(n) = 2O(f (n)).

without proof
(cf. “Introduction to the Theory of Computation”
by Michael Sipser (3rd edition), Theorem 7.11)

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Polynomial Reductions

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Polynomial Reductions: Idea

Reductions are a common and powerful concept in computer
science. We know them from Part D.

The basic idea is that we solve a new problem by reducing it
to a known problem.

In complexity theory we want to use reductions
that allow us to prove statements of the following kind:
Problem A can be solved efficiently
if problem B can be solved efficiently.

For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Polynomial Reductions: Idea

Reductions are a common and powerful concept in computer
science. We know them from Part D.

The basic idea is that we solve a new problem by reducing it
to a known problem.

In complexity theory we want to use reductions
that allow us to prove statements of the following kind:
Problem A can be solved efficiently
if problem B can be solved efficiently.

For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Polynomial Reductions

Definition (Polynomial Reduction)

Let A ⊆ Σ∗ and B ⊆ Γ∗ be decision problems.
We say that A can be polynomially reduced to B,
written A ≤p B, if there is a function f : Σ∗ → Γ∗ such that:

f can be computed in polynomial time by a DTM

i. e., there is a polynomial p and a DTM M such that M
computes f (w) in at most p(|w |) steps given input w ∈ Σ∗

f reduces A to B

i. e., for all w ∈ Σ∗: w ∈ A iff f (w) ∈ B

f is called a polynomial reduction from A to B

German: A polynomiell auf B reduzierbar,

German:

polynomielle Reduktion von A auf B

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Polynomial Reductions: Remarks

Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).

In practice, of course we do not have to specify a DTM for f :
it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Polynomial Reductions: Example (1)

Definition (HamiltonCycle)

HamiltonCycle is the following decision problem:

Given: undirected graph G = 〈V ,E 〉
Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)

A Hamilton cycle of G is a sequence of vertices in V ,
π = 〈v0, . . . , vn〉, with the following properties:

π is a path: there is an edge from vi to vi+1 for all 0 ≤ i < n

π is a cycle: v0 = vn

π is simple: vi 6= vj for all i 6= j with i , j < n

π is Hamiltonian: all nodes of V are included in π

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Polynomial Reductions: Example (2)

Definition (TSP)

TSP (traveling salesperson problem) is the following
decision problem:

Given: finite set S 6= ∅ of cities, symmetric cost function
cost : S × S → N0, cost bound K ∈ N0

Question: Is there a tour with total cost at most K , i. e.,
a permutation 〈s1, . . . , sn〉 of the cities with∑n−1

i=1 cost(si , si+1) + cost(sn, s1) ≤ K?

German: Problem der/des Handlungsreisenden

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Polynomial Reductions: Example (3)

Theorem (HamiltonCycle ≤p TSP)

HamiltonCycle ≤p TSP.

Proof.

 blackboard

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)

Let A, B and C decision problems.

1 If A ≤p B and B ∈ P, then A ∈ P.

2 If A ≤p B and B ∈ NP, then A ∈ NP.

3 If A ≤p B and A /∈ P, then B /∈ P.

4 If A ≤p B and A /∈ NP, then B /∈ NP.

5 If A ≤p B and B ≤p C, then A ≤p C.

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Properties of Polynomial Reductions (2)

Proof.

for 1.:

We must show that there is a DTM accepting A
in polynomial time.

We know:

There is a DTM MB that accepts B in time p,
where p is a polynomial.

There is a DTM Mf that computes a reduction from A to B
in time q, where q is a polynomial.

. . .

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like Mf , and then
(after Mf stops) behaves like MB on the output of Mf .

M accepts A:

M behaves on input w as MB does on input f (w),
so it accepts w if and only if f (w) ∈ B.

Because f is a reduction, w ∈ A iff f (w) ∈ B.

. . .

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Properties of Polynomial Reductions (4)

Proof (continued).

Computation time of M on input w :

first Mf runs on input w : ≤ q(|w |) steps

then MB runs on input f (w): ≤ p(|f (w)|) steps

|f (w)| ≤ |w |+ q(|w |) because in q(|w |) steps,
Mf can write at most q(|w |) additional symbols onto the tape

 total computation time ≤ q(|w |) + p(|f (w)|)
≤ q(|w |) + p(|w |+ q(|w |))

 this is polynomial in |w | A ∈ P.

. . .

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that MB and M are NTMs

of 3.+4.:
equivalent formulations of 1.+2. (contraposition)

of 5.:
Let A ≤p B with reduction f and B ≤p C with reduction g .
Then g ◦ f is a reduction of A to C .

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1.

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that MB and M are NTMs

of 3.+4.:
equivalent formulations of 1.+2. (contraposition)

of 5.:
Let A ≤p B with reduction f and B ≤p C with reduction g .
Then g ◦ f is a reduction of A to C .

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1.

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that MB and M are NTMs

of 3.+4.:
equivalent formulations of 1.+2. (contraposition)

of 5.:
Let A ≤p B with reduction f and B ≤p C with reduction g .
Then g ◦ f is a reduction of A to C .

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1.

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

NP-Hardness and NP-Completeness

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.

B is called NP-hard if A ≤p B for all problems A ∈ NP.

B is called NP-complete if B ∈ NP and B is NP-hard.

German: NP-hart (selten: NP-schwer), NP-vollständig

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

NP-Complete Problems: Meaning

NP-hard problems are “at least as difficult”
as all problems in NP.

NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

If A ∈ P for any NP-complete problem, then P = NP. (Why?)

That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

Do NP-complete problems actually exist?

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

NP-Complete Problems: Meaning

NP-hard problems are “at least as difficult”
as all problems in NP.

NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

If A ∈ P for any NP-complete problem, then P = NP. (Why?)

That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

Do NP-complete problems actually exist?

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

NP-Complete Problems: Meaning

NP-hard problems are “at least as difficult”
as all problems in NP.

NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

If A ∈ P for any NP-complete problem, then P = NP. (Why?)

That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

Do NP-complete problems actually exist?

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Summary

P and NP Polynomial Reductions NP-Hardness and NP-Completeness Summary

Summary

P: languages accepted by DTMs in polynomial time

NP: languages accepted by NTMs in polynomial time

polynomial reductions: A ≤p B if
there is a total function f computable in polynomial time,
such that for all words w : w ∈ A iff f (w) ∈ B

A ≤p B implies that A is “at most as difficult” as B

polynomial reductions are transitive

NP-hard problems B: A ≤p B for all A ∈ NP

NP-complete problems B: B ∈ NP and B is NP-hard

	P and NP
	

	Polynomial Reductions
	

	NP-Hardness and NP-Completeness
	

	Summary
	

