Theory of Computer Science
E2. P, NP and Polynomial Reductions

Gabriele Roger

University of Basel

Theory of Computer Science

May 11, 2020 — E2. P, NP and Polynomial Reductions

E2.1 P and NP

E2.2 Polynomial Reductions

E2.3 NP-Hardness and NP-Completeness

E2.4 Summary

May 11, 2020
Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 1/29
E2. P, NP and Polynomial Reductions P and NP
Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 3/29

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 2 /29
E2. P, NP and Polynomial Reductions P and NP
Course Overview
—| Background |
_| Com —| Nondeterminism |
ogic |
| utomars Theory | | IR
-—% Taring Computability| —I Polynomial Reductions|
_| More Computability | —|NP—compIete Problems|
Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 4 /29

E2. P, NP and Polynomial Reductions

Accepting a Language in Time f

Definition (Accepting a Language in Time f)

Let M be a DTM or NTM with input alphabet ¥,

L C ¥* alanguage and f : Ng — Ny a function.

M accepts L in time f if:
@ for all words w € L: M accepts w in time f(|w|)
@ for all words w ¢ L: M does not accept w

German: M akzeptiert L in Zeit f

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

P and NP

E2. P, NP and Polynomial Reductions P and NP
Accepting a Word in Time n
Definition (Accepting a Word in Time n)
Let M be a DTM or NTM with input alphabet ¥,
w € 2* a word and n € Ng.
M accepts w in time n if there is a sequence of configurations
€, - - -, Cx With k < n, where:
» ¢y is the start configuration for w,
> e k- F ¢, and
» ¢, is an end configuration.
German: M akzeptiert w in Zeit n
Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 5 /29
P and NP

E2. P, NP and Polynomial Reductions

P and NP

Definition (P and NP)
P is the set of all languages L for which a DTM M
and a polynomial p exist such that M accepts L in time p.

NP is the set of all languages L for which an NTM M
and a polynomial p exist such that M accepts L in time p.

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

7/

29

E2. P, NP and Polynomial Reductions

P and NP: Remarks

> Sets of languages like P and NP that are defined

in terms of computation time of TMs

(or other computation models) are called complexity classes.
» We know that P C NP. (Why?)

» Whether the converse is also true is an open question:
this is the famous P-NP problem.

German: Komplexitatsklassen, P-NP-Problem

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

P and NP

8 /29

E2. P, NP and Polynomial Reductions

Example: DIRHAMILTONCYCLE € NP

Example (DIRHAMILTONCYCLE € NP)
The nondeterministic algorithm of Chapter E1 solves the problem
and can be implemented on an NTM in polynomial time.

» |s DIRHAMILTONCYCLE € P also true?
» The answer is unknown.

» So far, only exponential deterministic algorithms
for the problem are known.

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

P and NP

/ 29

E2. P, NP and Polynomial Reductions

Simulation of NTMs with DTMs

» Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

» But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

More specifically:

> Let M be an NTM that accepts language L in time f,
where f(n) > n for all n € No.

» Then we can specify a DTM M’ that accepts L in time f,
where f/(n) = 20(f(n),

» without proof
(cf. “Introduction to the Theory of Computation”
by Michael Sipser (3rd edition), Theorem 7.11)

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

P and NP

10 / 29

E2. P, NP and Polynomial Reductions

E2.2 Polynomial Reductions

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

11/

Polynomial Reductions

E2. P, NP and Polynomial Reductions

Course Overview

—{ Background ‘

Polynomial Reductions

_{ Logic ‘ —{ Nondeterminism

—{ Automata Theory ‘ —< .

—{ Turing Computability‘ —

-—{ Cook-Levin Theorem |

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

—{ More Computability ‘ —{NP—compIete Problems‘

12 /29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: ldea

» Reductions are a common and powerful concept in computer
science. We know them from Part D.

» The basic idea is that we solve a new problem by reducing it
to a known problem.

» In complexity theory we want to use reductions
that allow us to prove statements of the following kind:
Problem A can be solved efficiently
if problem B can be solved efficiently.

» For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 13 /29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions

Definition (Polynomial Reduction)
Let AC ¥* and B C I'* be decision problems.
We say that A can be polynomially reduced to B,
written A <, B, if there is a function f : ¥* — ['* such that:
» f can be computed in polynomial time by a DTM
» i.e., there is a polynomial p and a DTM M such that M
computes f(w) in at most p(|w|) steps given input w € T*
» f reduces Ato B
> ie, forallwe X weAiff f(w) € B

f is called a polynomial reduction from A to B

German: A polynomiell auf B reduzierbar,
polynomielle Reduktion von A auf B

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 14 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Remarks

» Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).
» In practice, of course we do not have to specify a DTM for f:

it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 15 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)

HaMILTONCYCLE is the following decision problem:
» Given: undirected graph G = (V, E)
» Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)
A Hamilton cycle of G is a sequence of vertices in V/,
m = (vo,..., Vp), with the following properties:

» 7 is a path: there is an edge from v; to vj;1 forall 0 < i< n
> 7 is acycle: vog = v,

» s simple: v; # vj forall i # j with i,j <n

>

7 is Hamiltonian: all nodes of V are included in 7

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 16 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (2)

Definition (T'SP)
TSP (traveling salesperson problem) is the following
decision problem:

» Given: finite set S # () of cities, symmetric cost function
cost: S xS — Ny, cost bound K € Ny

» Question: Is there a tour with total cost at most K, i.e.,
a permutation (sy,...,s,) of the cities with
27:_11 cost(s;, si+1) + cost(sp, 51) < K?

German: Problem der/des Handlungsreisenden

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 17 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE <, TSP)
HamiLTONCYCLE <, TSP.

Proof.
~+ blackboard OJ
Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 18 / 29
E2. P, NP and Polynomial Reductions Polynomial Reductions

E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)
Let A, B and C decision problems.

@ IfA<,Band Bc P, then Ac P.
@ IfA<, B and B € NP, then A c NP.
Q@ IfA<,Band A¢ P, then B ¢ P.

Q IfA<, B and A¢ NP, then B ¢ NP.
@ IfA<,Band B <, C, then A<, C.

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 19 / 29

Properties of Polynomial Reductions (2)

Proof.
for 1.

We must show that there is a DTM accepting A
in polynomial time.
We know:

» There is a DTM Mg that accepts B in time p,
where p is a polynomial.

» There is a DTM My that computes a reduction from A to B
in time g, where q is a polynomial.

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 20 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like Mg, and then
(after My stops) behaves like Mg on the output of M.

M accepts A:

» M behaves on input w as Mg does on input f(w),
so it accepts w if and only if f(w) € B.

» Because f is a reduction, w € A iff f(w) € B.

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 21 /29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (4)

Proof (continued).
Computation time of M on input w:
» first Mf runs on input w: < g(|w|) steps
» then Mg runs on input f(w): < p(|f(w)]) steps
> |f(w)| < |w|+ q(lw]|) because in g(|w]) steps,
My can write at most g(|w|) additional symbols onto the tape

~ total computation time < g(|w|) + p(|f(w)])
< q(lwl) + p(Iw| + q(lwl]))
~ this is polynomial in |w| ~~ A € P.

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 22 /29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.

analogous to 1., only that Mg and M are NTMs
of 3.4+4.

equivalent formulations of 1.4-2. (contraposition)
of 5.

Let A <, B with reduction f and B <, C with reduction g.
Then g o f is a reduction of A to C.

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1. [

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 23 /29

E2. P, NP and Polynomial Reductions NP-Hardness and NP-Completeness

E2.3 NP-Hardness and

NP-Completeness

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 24 /29

E2. P, NP and Polynomial Reductions

Course Overview

—{ Background ‘
—{ Logic ‘ _< Nondeterminism |

—{ Automata Theory ‘

-—{ Cook-Levin Theorem |

—{ More Computability ‘ —{NP—compIete Problems‘

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

NP-Hardness and NP-Completeness

25 / 29

E2. P, NP and Polynomial Reductions NP-Hardness and NP-Completeness

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)
Let B be a decision problem.

B is called NP-hard if A <, B for all problems A € NP.
B is called NP-complete if B € NP and B is NP-hard.

German: NP-hart (selten: NP-schwer), NP-vollstindig

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 26 / 29

E2. P, NP and Polynomial Reductions

NP-Complete Problems: Meaning

» NP-hard problems are “at least as difficult”
as all problems in NP.

» NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

> If A € P for any NP-complete problem, then P = NP. (Why?)

» That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

» Do NP-complete problems actually exist?

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

NP-Hardness and NP-Completeness

27 / 29

E2. P, NP and Polynomial Reductions Summary

E2.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020 28 / 29

E2. P, NP and Polynomial Reductions

Summary

> P: languages accepted by DTMs in polynomial time

v

NP: languages accepted by NTMs in polynomial time

v

polynomial reductions: A <, B if
there is a total function f computable in polynomial time,
such that for all words w: w € A iff f(w) € B

A <, B implies that A is “at most as difficult” as B
polynomial reductions are transitive

NP-hard problems B: A <, B for all A€ NP
NP-complete problems B: B € NP and B is NP-hard

vvyyvyy

Gabriele Roger (University of Basel) Theory of Computer Science May 11, 2020

Summary

29 /29

	P and NP
	

	Polynomial Reductions
	

	NP-Hardness and NP-Completeness
	

	Summary
	

