Theory of Computer Science
E1l. Complexity Theory: Motivation and Introduction

Gabriele Roger
University of Basel

May 6, 2020

Measure Runtime? >roblems

Overview: Course

contents of this course:

A.

background v
> mathematical foundations and proof techniques
logic v
> How can knowledge be represented?
How can reasoning be automated?
automata theory and formal languages v
> What is a computation?

. Turing computability v/

> What can be computed at all?

. complexity theory

> What can be computed efficiently?

more computability theory
> Other models of computability

Course Overview

—{ Background ‘
_{ Boge ‘ —{ Nondeterminism |
|

— P, NP |

—{ Polynomial Reductions ‘

—{ Automata Theory

—{ Turing Computability ‘

-—{ Cook-Levin Theorem |

—{ More Computability ‘ —{ NP-complete Problems‘

Motivation
©0000000

Motivation

ision Problems Nondeterminism Summ

Motivation
0@000000

A Scenario (1)

Example Scenario

m You are a programmer at a logistics company.

m Your boss gives you the task of developing a program
to optimize the route of a delivery truck:

m The truck begins its route at the company depot.

m It has to visit 50 stops.

m You know the distances between all relevant locations
(stops and depot).

m Your program should compute a tour visiting all stops
and returning to the depot on a shortest route.

Motivation leasure Runtime? Problems

[e]e] lele]elele)

A Scenario (2)

Example Scenario (ctd.)
m You work on the problem for weeks, but you do not manage
to complete the task.
m All of your attempted programs

m compute routes that are possibly suboptimal, or
m do not terminate in reasonable time (say: within a month).

m What do you say to your boss?

Motivation Runtime?

[e]e]e] le]elele)

What You Don’t Want to Say

>

“l can't find an efficient algorithm,
| guess I'm just too dumb.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

Motivation Runtime?

[e]e]e] le]elele)

What You Would Like to Say

“l can't find an efficient algorithm,
because no such algorithm is possible!”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

Motivation Ho Neasure Runtime? D 1 Problems
[e]e]e] lelele]e] o]

What Complexity Theory Allows You to Say

“l can't find an efficient algorithm,
but neither can all these famous people.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 3

Motivation Measure Runtime? roblems

[e]e]e]e] lelele)

Why Complexity Theory?

Complexity Theory

Complexity theory tells us which problems
can be solved quickly (“simple problems”)
and which ones cannot (“hard problems™).

German: Komplexitatstheorie

m This is useful in practice because simple and hard problems
require different techniques to solve.

m If we can show that a problem is hard we do not need to waste
our time with the (futile) search for a “simple” algorithm.

Motivation easure Runtime? >roblems
[e]e]e]ele] lele]

Why Reductions?

Reductions

An important part of complexity theory are
(polynomial) reductions that show how a given problem P
can be reduced to another problem Q.

German: Reduktionen

m useful for theoretical analysis of P and @ because
it allows us to transfer our knowledge between them

m often also useful for practical algorithms for P:
reduce P to @ and then use the best known algorithm for @

Motivation Measure Runtime? roblems

[e]e]e]e]e]e] Jo)

Test Your Intuition! (1)

The following slide lists some graph problems.
The input is always a directed graph G = (V, E).
How difficult are the problems in your opinion?

Sort the problems
from easiest (= requires least amount of time to solve)
to hardest (= requires most time to solve)

no justification necessary, just follow your intuition!

anonymous and not graded

Motivation o Neasure Runtime?) 1 Problems

0000000

Test Your Intuition! (2)

@ Find a simple path (= without cycle)
from u € V to v € V with minimal length.

@ Find a simple path (= without cycle)
from u € V to v € V with maximal length.

© Determine whether G is strongly connected
(every node is reachable from every other node).

Find a cycle (non-empty path from u to u for any u € V;
multiple visits of nodes are allowed).

Find a cycle that visits all nodes.
Find a cycle that visits a given node wu.

Find a path that visits all nodes without repeating a node.

©©0©00

Find a path that uses all edges without repeating an edge.

How to Measure Runtime?

How to Measure Runtime? Problems

0@000

How to Measure Runtime?

m Time complexity is a way to measure how much time
it takes to solve a problem.

m How can we define such a measure appropriately?

German: Zeitkomplexitit/Zeitaufwand

How to Measure Runtime?
00000

Example Statements about Runtime

Example statements about runtime:

m “Running sort /usr/share/dict/words
on the computer dakar takes 0.035 seconds.”

m “With a 1 MiB input file, sort takes
at most 1 second on a modern computer.”

m “Quicksort is faster than sorting by insertion.”
m “Sorting by insertion is slow.”

~ Very different statements with different pros and cons.

How to Measure Runtime? roblems

(o]e]e] le]

Precise Statements vs. General Statements

Example Statement about Runtime

“Running sort /usr/share/dict/words
on the computer dakar takes 0.035 seconds.”

advantage: very precise

disadvantage: not general
m input-specific:
What if we want to sort other files?
m machine-specific:
What happens on a different computer?

m even situation-specific:
Will we get the same result tomorrow that we got today?

How to Measure Runtime?
0000@

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

How to Measure Runtime? Problems
0000@

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

1. General Inputs

Instead of concrete inputs, we talk about general types of input:

m Example: runtime to sort an input of size n
in the worst case

m Example: runtime to sort an input of size n
in the average case

here: runtime for input size n in the worst case

How to Measure Runtime? >roblems

(o]e]e]e]]

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

2. Ignoring Details

Instead of exact formulas for the runtime we specify
the order of magnitude:

m Example: instead of saying that we need time
[1.2nlog n] — 4n+ 100, we say that we need time O(nlog n).

m Example: instead of saying that we need time O(nlog n),
O(n?) or O(n*), we say that we need polynomial time.

here: What can be computed in polynomial time?

How to Measure Runtime? Problems

(o]e]e]e]]

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

3. Abstract Cost Measures
Instead of the runtime on a concrete computer
we consider a more abstract cost measure:

m Example: count the number of executed
machine code statements

m Example: count the number of executed
Java byte code statements

m Example: count the number of element comparisons
of a sorting algorithms

here: count the computation steps of a Turing machine
(polynomially equivalent to other measures)

Decision Problems

leasure Runtime? Decision Problems

[e] lele]e}

Decision Problems

m As before, we simplify our investigation
by restricting our attention to decision problems.
m More complex computational problems can be solved with

multiple queries for an appropriately defined decision problem
(“playing 20 questions”).

m Formally, decision problems are languages (as before), but we
use an informal “given” /“question” notation where possible.

easure Runtime? Decision Problems

[e]e] le]e}

Example: Decision vs. General Problem (1)

Definition (Hamilton Cycle)
Let G = (V, E) be a (directed or undirected) graph.

A Hamilton cycle of G is a sequence of vertices in V,

7 = (o, ..., Vn), with the following properties:
m 7 is a path: there is an edge from v; to vj41 forall 0 < i< n
m 7isacycle: vg=v,

m 7 is simple: v; # v; for all i # j with i,j <n

m 7 is Hamiltonian: all nodes of V are included in 7

German: Hamiltonkreis/Hamiltonzyklus

Measure Runtime? Decision Problems
0000

Example: Decision vs. General Problem (2)

Example (Hamilton Cycles in Directed Graphs)
P: general problem DIRHAMILTONCYCLEGEN
m [nput: directed graph G = (V, E)

m Output: a Hamilton cycle of G or a message that none exists

D: decision problem DIRHAMILTONCYCLE
m Given: directed graph G = (V, E)
m Question: Does G contain a Hamilton cycle?

These problems are polynomially equivalent:

from a polynomial algorithm for one of the problems

one can construct a polynomial algorithm for the other problem.
(Without proof.)

easure Runtime? Decision Problems

[e]e]ee] }

Algorithms for Decision Problems

Algorithms for decision problems:

m Where possible, we specify algorithms for decision problems
in pseudo-code.
m Since they are only yes/no questions,
we do not have to return a general result.
m Instead we use the statements
m ACCEPT to accept the given input (“yes” answer) and
m REJECT to reject it (“no” answer).
m Where we must be more formal, we use Turing machines
and the notion of accepting from chapter C7.

Nondeterminism

0000000000

Nondeterminism

Course Overview

Background

_|
_|

Nondeterminism

0O@00000000

|
Logic |
|

—| Automata Theory

% Turing Computability|

_I

—I Polynomial Reductions |

P, NP |

—| Cook-Levin Theorem |

—| More Computability |

—I NP-complete Problems |

e Runtime? >roblems Nondeterminism

00@0000000

Nondeterminism

m To develop complexity theory, we need
the algorithmic concept of nondeterminism.
m already known for Turing machines (~~ chapter C7):
® An NTM can have more than one possible successor
configuration for a given configuration.
m Input x is accepted if there is at least one possible computation
(configuration sequence) that leads to an end state.
m Here we analogously introduce nondeterminism
for pseudo-code.

German: Nichtdeterminismus

Measure Runtime? roblems Nondeterminism

[e]e]e] le]ele]ele]e)

Nondeterministic Algorithms

nondeterministic algorithms:

m All constructs of deterministic algorithms are also allowed in
nondeterministic algorithms: IF, WHILE, etc.

m Additionally, there is a nondeterministic assignment:
GUESS x; € {0,1}
where x; is a program variable.

German: nichtdeterministische Zuweisung

Neasure Runtime?) 1 Problems Nondeterminism
o 0000@00000

Nondeterministic Algorithms: Acceptance

m Meaning of GUESS x; € {0,1}:
x; is assigned either the value 0 or the value 1.

m This implies that the behavior of the program
on a given input is no longer uniquely defined:
there are multiple possible execution paths.

m The program accepts a given input if at least one
execution path leads to an ACCEPT statement.

m Otherwise, the input is rejected.

Note: asymmetry between accepting and rejecting!
(cf. semi-decidability)

Mleasure Runtime? D) 1 Problems

Nondeterminism
00000e0000

More Complex GUESS Statements

m We will also guess more than one bit at a time:
GUESS x € {1,2,...,n}

or more generally
GUESS x e S

for a set S.

m These are abbreviations and can be split into [log, n|
(or [log, |S|]) “atomic” GUESS statements.

asure Runtime? ecision Problems Nondeterminism

0000008000

Example: Nondeterministic Algorithms (1)

Example (DIRHAMILTONCYCLE)
input: directed graph G = (V, E)

start := an arbitrary node from V
current := start
remaining := V \ {start}
WHILE remaining # ():
GUESS next € remaining
IF (current, next) ¢ E:
REJECT
remaining = remaining \ {next}
current := next
IF (current, start) € E:
ACCEPT
ELSE:
REJECT

to Measure Runtime? D 1 Problems Nondeterminism
5 0000000800

Example: Nondeterministic Algorithms (2)

m With appropriate data structures, this algorithm solves
the problem in O(nlog n) program steps,
where n = |V/| + |E| is the size of the input.

m How many steps would a deterministic algorithm need?

leasure Runtime? Problems Nondeterminism

Guess and Check

m The DIRHAMILTONCYCLE example illustrates
a general design principle for nondeterministic algorithms:

guess and check

m In general, nondeterministic algorithms can
solve a problem by first guessing a “solution”
and then verifying that it is indeed a solution.
(In the example, these two steps are interleaved.)

m If solutions to a problem can be efficiently verified,
then the problem can also be efficiently solved
if nondeterminism may be used.

German: Raten und Priifen

easure Runtime? >roblems Nondeterminism

000000000 e

The Power of Nondeterminism

m Nondeterministic algorithms are very powerful
because they can “guess” the “correct” computation step.

m Or, interpreted differently: they go through
many possible computations “in parallel”,
and it suffices if one of them is successful.

m Can they solve problems efficiently (in polynomial time)
which deterministic algorithms cannot solve efficiently?

m This is the big question!

Summary
[ele}

Summary

leasure Runtime? Problems Summary

oeo

Summary (1)

m Complexity theory deals with the question which problems
can be solved efficiently and which ones cannot.

m here: focus on what can be computed in polynomial time

m To formalize this, we use Turing machines,
but other formalisms are polynomially equivalent.

m We consider decision problems, but the results
directly transfer to general computational problems.

o Measure Runtime? Problems Summary

ooe

Summary (2)

important concept: nondeterminism

m Nondeterministic algorithms can “guess”,
i.e., perform multiple computations “at the same time”.

m An input receives a “yes” answer if at least one
computation path accepts it.

m in NTMs: with nondeterministic transitions
(6(q, a) contains multiple elements)

m in pseudo-code: with GUESS statements

	Motivation
	

	How to Measure Runtime?
	

	Decision Problems
	

	Nondeterminism
	

	Summary

