
Theory of Computer Science
E1. Complexity Theory: Motivation and Introduction

Gabriele Röger

University of Basel

May 6, 2020

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 1 / 38

Theory of Computer Science
May 6, 2020 — E1. Complexity Theory: Motivation and Introduction

E1.1 Motivation

E1.2 How to Measure Runtime?

E1.3 Decision Problems

E1.4 Nondeterminism

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 2 / 38

Overview: Course

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages X
. What is a computation?

D. Turing computability X
. What can be computed at all?

E. complexity theory
. What can be computed efficiently?

F. more computability theory
. Other models of computability

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 3 / 38

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 4 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

E1.1 Motivation

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 5 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

A Scenario (1)

Example Scenario
I You are a programmer at a logistics company.

I Your boss gives you the task of developing a program
to optimize the route of a delivery truck:
I The truck begins its route at the company depot.
I It has to visit 50 stops.
I You know the distances between all relevant locations

(stops and depot).
I Your program should compute a tour visiting all stops

and returning to the depot on a shortest route.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 6 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

A Scenario (2)

Example Scenario (ctd.)
I You work on the problem for weeks, but you do not manage

to complete the task.
I All of your attempted programs

I compute routes that are possibly suboptimal, or
I do not terminate in reasonable time (say: within a month).

I What do you say to your boss?

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 7 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

What You Don’t Want to Say

“I can’t find an efficient algorithm,
I guess I’m just too dumb.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 8 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

What You Would Like to Say

“I can’t find an efficient algorithm,
because no such algorithm is possible!”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 9 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

What Complexity Theory Allows You to Say

“I can’t find an efficient algorithm,
but neither can all these famous people.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 3

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 10 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

Why Complexity Theory?

Complexity Theory

Complexity theory tells us which problems
can be solved quickly (“simple problems”)
and which ones cannot (“hard problems”).

German: Komplexitätstheorie

I This is useful in practice because simple and hard problems
require different techniques to solve.

I If we can show that a problem is hard we do not need to waste
our time with the (futile) search for a “simple” algorithm.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 11 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

Why Reductions?

Reductions
An important part of complexity theory are
(polynomial) reductions that show how a given problem P
can be reduced to another problem Q.

German: Reduktionen

I useful for theoretical analysis of P and Q because
it allows us to transfer our knowledge between them

I often also useful for practical algorithms for P:
reduce P to Q and then use the best known algorithm for Q

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 12 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

Test Your Intuition! (1)

I The following slide lists some graph problems.

I The input is always a directed graph G = 〈V ,E 〉.
I How difficult are the problems in your opinion?

I Sort the problems
from easiest (= requires least amount of time to solve)
to hardest (= requires most time to solve)

I no justification necessary, just follow your intuition!

I anonymous and not graded

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 13 / 38

E1. Complexity Theory: Motivation and Introduction Motivation

Test Your Intuition! (2)

1 Find a simple path (= without cycle)
from u ∈ V to v ∈ V with minimal length.

2 Find a simple path (= without cycle)
from u ∈ V to v ∈ V with maximal length.

3 Determine whether G is strongly connected
(every node is reachable from every other node).

4 Find a cycle (non-empty path from u to u for any u ∈ V ;
multiple visits of nodes are allowed).

5 Find a cycle that visits all nodes.

6 Find a cycle that visits a given node u.

7 Find a path that visits all nodes without repeating a node.

8 Find a path that uses all edges without repeating an edge.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 14 / 38

E1. Complexity Theory: Motivation and Introduction How to Measure Runtime?

E1.2 How to Measure Runtime?

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 15 / 38

E1. Complexity Theory: Motivation and Introduction How to Measure Runtime?

How to Measure Runtime?

I Time complexity is a way to measure how much time
it takes to solve a problem.

I How can we define such a measure appropriately?

German: Zeitkomplexität/Zeitaufwand

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 16 / 38

E1. Complexity Theory: Motivation and Introduction How to Measure Runtime?

Example Statements about Runtime

Example statements about runtime:

I “Running sort /usr/share/dict/words

on the computer dakar takes 0.035 seconds.”

I “With a 1 MiB input file, sort takes
at most 1 second on a modern computer.”

I “Quicksort is faster than sorting by insertion.”

I “Sorting by insertion is slow.”

 Very different statements with different pros and cons.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 17 / 38

E1. Complexity Theory: Motivation and Introduction How to Measure Runtime?

Precise Statements vs. General Statements

Example Statement about Runtime

“Running sort /usr/share/dict/words

on the computer dakar takes 0.035 seconds.”

advantage: very precise

disadvantage: not general

I input-specific:
What if we want to sort other files?

I machine-specific:
What happens on a different computer?

I even situation-specific:
Will we get the same result tomorrow that we got today?

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 18 / 38

E1. Complexity Theory: Motivation and Introduction How to Measure Runtime?

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

1. General Inputs

Instead of concrete inputs, we talk about general types of input:

I Example: runtime to sort an input of size n
in the worst case

I Example: runtime to sort an input of size n
in the average case

here: runtime for input size n in the worst case

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 19 / 38

E1. Complexity Theory: Motivation and Introduction How to Measure Runtime?

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

2. Ignoring Details

Instead of exact formulas for the runtime we specify
the order of magnitude:

I Example: instead of saying that we need time
d1.2n log ne − 4n + 100, we say that we need time O(n log n).

I Example: instead of saying that we need time O(n log n),
O(n2) or O(n4), we say that we need polynomial time.

here: What can be computed in polynomial time?

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 20 / 38

E1. Complexity Theory: Motivation and Introduction How to Measure Runtime?

General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

3. Abstract Cost Measures
Instead of the runtime on a concrete computer
we consider a more abstract cost measure:

I Example: count the number of executed
machine code statements

I Example: count the number of executed
Java byte code statements

I Example: count the number of element comparisons
of a sorting algorithms

here: count the computation steps of a Turing machine
(polynomially equivalent to other measures)

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 21 / 38

E1. Complexity Theory: Motivation and Introduction Decision Problems

E1.3 Decision Problems

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 22 / 38

E1. Complexity Theory: Motivation and Introduction Decision Problems

Decision Problems

I As before, we simplify our investigation
by restricting our attention to decision problems.

I More complex computational problems can be solved with
multiple queries for an appropriately defined decision problem
(“playing 20 questions”).

I Formally, decision problems are languages (as before), but we
use an informal “given”/“question” notation where possible.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 23 / 38

E1. Complexity Theory: Motivation and Introduction Decision Problems

Example: Decision vs. General Problem (1)

Definition (Hamilton Cycle)

Let G = 〈V ,E 〉 be a (directed or undirected) graph.

A Hamilton cycle of G is a sequence of vertices in V ,
π = 〈v0, . . . , vn〉, with the following properties:

I π is a path: there is an edge from vi to vi+1 for all 0 ≤ i < n

I π is a cycle: v0 = vn
I π is simple: vi 6= vj for all i 6= j with i , j < n

I π is Hamiltonian: all nodes of V are included in π

German: Hamiltonkreis/Hamiltonzyklus

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 24 / 38

E1. Complexity Theory: Motivation and Introduction Decision Problems

Example: Decision vs. General Problem (2)

Example (Hamilton Cycles in Directed Graphs)

P: general problem DirHamiltonCycleGen

I Input: directed graph G = 〈V ,E 〉
I Output: a Hamilton cycle of G or a message that none exists

D: decision problem DirHamiltonCycle

I Given: directed graph G = 〈V ,E 〉
I Question: Does G contain a Hamilton cycle?

These problems are polynomially equivalent:
from a polynomial algorithm for one of the problems
one can construct a polynomial algorithm for the other problem.
(Without proof.)

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 25 / 38

E1. Complexity Theory: Motivation and Introduction Decision Problems

Algorithms for Decision Problems

Algorithms for decision problems:

I Where possible, we specify algorithms for decision problems
in pseudo-code.

I Since they are only yes/no questions,
we do not have to return a general result.

I Instead we use the statements
I ACCEPT to accept the given input (“yes” answer) and
I REJECT to reject it (“no” answer).

I Where we must be more formal, we use Turing machines
and the notion of accepting from chapter C7.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 26 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

E1.4 Nondeterminism

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 27 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 28 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

Nondeterminism

I To develop complexity theory, we need
the algorithmic concept of nondeterminism.

I already known for Turing machines (chapter C7):
I An NTM can have more than one possible successor

configuration for a given configuration.
I Input x is accepted if there is at least one possible computation

(configuration sequence) that leads to an end state.

I Here we analogously introduce nondeterminism
for pseudo-code.

German: Nichtdeterminismus

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 29 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

Nondeterministic Algorithms

nondeterministic algorithms:

I All constructs of deterministic algorithms are also allowed in
nondeterministic algorithms: IF, WHILE, etc.

I Additionally, there is a nondeterministic assignment:
GUESS xi ∈ {0, 1}

where xi is a program variable.

German: nichtdeterministische Zuweisung

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 30 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

Nondeterministic Algorithms: Acceptance

I Meaning of GUESS xi ∈ {0, 1}:
xi is assigned either the value 0 or the value 1.

I This implies that the behavior of the program
on a given input is no longer uniquely defined:
there are multiple possible execution paths.

I The program accepts a given input if at least one
execution path leads to an ACCEPT statement.

I Otherwise, the input is rejected.

Note: asymmetry between accepting and rejecting!

Note:

(cf. semi-decidability)

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 31 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

More Complex GUESS Statements

I We will also guess more than one bit at a time:
GUESS x ∈ {1, 2, . . . , n}

or more generally
GUESS x ∈ S

for a set S .

I These are abbreviations and can be split into dlog2 ne
(or dlog2 |S |e) “atomic” GUESS statements.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 32 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

Example: Nondeterministic Algorithms (1)

Example (DirHamiltonCycle)

input: directed graph G = 〈V ,E 〉

start := an arbitrary node from V
current := start
remaining := V \ {start}
WHILE remaining 6= ∅:

GUESS next ∈ remaining
IF 〈current, next〉 /∈ E :

REJECT
remaining := remaining \ {next}
current := next

IF 〈current, start〉 ∈ E :
ACCEPT

ELSE:
REJECT

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 33 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

Example: Nondeterministic Algorithms (2)

I With appropriate data structures, this algorithm solves
the problem in O(n log n) program steps,
where n = |V |+ |E | is the size of the input.

I How many steps would a deterministic algorithm need?

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 34 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

Guess and Check

I The DirHamiltonCycle example illustrates
a general design principle for nondeterministic algorithms:

guess and check

I In general, nondeterministic algorithms can
solve a problem by first guessing a “solution”
and then verifying that it is indeed a solution.
(In the example, these two steps are interleaved.)

I If solutions to a problem can be efficiently verified,
then the problem can also be efficiently solved
if nondeterminism may be used.

German: Raten und Prüfen

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 35 / 38

E1. Complexity Theory: Motivation and Introduction Nondeterminism

The Power of Nondeterminism

I Nondeterministic algorithms are very powerful
because they can “guess” the “correct” computation step.

I Or, interpreted differently: they go through
many possible computations “in parallel”,
and it suffices if one of them is successful.

I Can they solve problems efficiently (in polynomial time)
which deterministic algorithms cannot solve efficiently?

I This is the big question!

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 36 / 38

E1. Complexity Theory: Motivation and Introduction Summary

Summary (1)

I Complexity theory deals with the question which problems
can be solved efficiently and which ones cannot.

I here: focus on what can be computed in polynomial time

I To formalize this, we use Turing machines,
but other formalisms are polynomially equivalent.

I We consider decision problems, but the results
directly transfer to general computational problems.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 37 / 38

E1. Complexity Theory: Motivation and Introduction Summary

Summary (2)

important concept: nondeterminism

I Nondeterministic algorithms can “guess”,
i. e., perform multiple computations “at the same time”.

I An input receives a “yes” answer if at least one
computation path accepts it.

I in NTMs: with nondeterministic transitions
(δ(q, a) contains multiple elements)

I in pseudo-code: with GUESS statements

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2020 38 / 38

	Motivation
	

	How to Measure Runtime?
	

	Decision Problems
	

	Nondeterminism
	

	Summary

