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Overview: Course

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages X
. What is a computation?

D. Turing computability X
. What can be computed at all?

E. complexity theory
. What can be computed efficiently?

F. more computability theory
. Other models of computability
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Course Overview
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E1.1 Motivation
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A Scenario (1)

Example Scenario
I You are a programmer at a logistics company.

I Your boss gives you the task of developing a program
to optimize the route of a delivery truck:
I The truck begins its route at the company depot.
I It has to visit 50 stops.
I You know the distances between all relevant locations

(stops and depot).
I Your program should compute a tour visiting all stops

and returning to the depot on a shortest route.
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A Scenario (2)

Example Scenario (ctd.)
I You work on the problem for weeks, but you do not manage

to complete the task.
I All of your attempted programs

I compute routes that are possibly suboptimal, or
I do not terminate in reasonable time (say: within a month).

I What do you say to your boss?
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What You Don’t Want to Say

“I can’t find an efficient algorithm,
I guess I’m just too dumb.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2
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What You Would Like to Say

“I can’t find an efficient algorithm,
because no such algorithm is possible!”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2
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What Complexity Theory Allows You to Say

“I can’t find an efficient algorithm,
but neither can all these famous people.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 3
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Why Complexity Theory?

Complexity Theory

Complexity theory tells us which problems
can be solved quickly (“simple problems”)
and which ones cannot (“hard problems”).

German: Komplexitätstheorie

I This is useful in practice because simple and hard problems
require different techniques to solve.

I If we can show that a problem is hard we do not need to waste
our time with the (futile) search for a “simple” algorithm.
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Why Reductions?

Reductions
An important part of complexity theory are
(polynomial) reductions that show how a given problem P
can be reduced to another problem Q.

German: Reduktionen

I useful for theoretical analysis of P and Q because
it allows us to transfer our knowledge between them

I often also useful for practical algorithms for P:
reduce P to Q and then use the best known algorithm for Q
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Test Your Intuition! (1)

I The following slide lists some graph problems.

I The input is always a directed graph G = 〈V ,E 〉.
I How difficult are the problems in your opinion?

I Sort the problems
from easiest (= requires least amount of time to solve)
to hardest (= requires most time to solve)

I no justification necessary, just follow your intuition!

I anonymous and not graded
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Test Your Intuition! (2)

1 Find a simple path (= without cycle)
from u ∈ V to v ∈ V with minimal length.

2 Find a simple path (= without cycle)
from u ∈ V to v ∈ V with maximal length.

3 Determine whether G is strongly connected
(every node is reachable from every other node).

4 Find a cycle (non-empty path from u to u for any u ∈ V ;
multiple visits of nodes are allowed).

5 Find a cycle that visits all nodes.

6 Find a cycle that visits a given node u.

7 Find a path that visits all nodes without repeating a node.

8 Find a path that uses all edges without repeating an edge.
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E1.2 How to Measure Runtime?
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How to Measure Runtime?

I Time complexity is a way to measure how much time
it takes to solve a problem.

I How can we define such a measure appropriately?

German: Zeitkomplexität/Zeitaufwand
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Example Statements about Runtime

Example statements about runtime:

I “Running sort /usr/share/dict/words

on the computer dakar takes 0.035 seconds.”

I “With a 1 MiB input file, sort takes
at most 1 second on a modern computer.”

I “Quicksort is faster than sorting by insertion.”

I “Sorting by insertion is slow.”

 Very different statements with different pros and cons.
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Precise Statements vs. General Statements

Example Statement about Runtime

“Running sort /usr/share/dict/words

on the computer dakar takes 0.035 seconds.”

advantage: very precise

disadvantage: not general

I input-specific:
What if we want to sort other files?

I machine-specific:
What happens on a different computer?

I even situation-specific:
Will we get the same result tomorrow that we got today?
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General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

1. General Inputs

Instead of concrete inputs, we talk about general types of input:

I Example: runtime to sort an input of size n
in the worst case

I Example: runtime to sort an input of size n
in the average case

here: runtime for input size n in the worst case
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General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

2. Ignoring Details

Instead of exact formulas for the runtime we specify
the order of magnitude:

I Example: instead of saying that we need time
d1.2n log ne − 4n + 100, we say that we need time O(n log n).

I Example: instead of saying that we need time O(n log n),
O(n2) or O(n4), we say that we need polynomial time.

here: What can be computed in polynomial time?
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General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

3. Abstract Cost Measures
Instead of the runtime on a concrete computer
we consider a more abstract cost measure:

I Example: count the number of executed
machine code statements

I Example: count the number of executed
Java byte code statements

I Example: count the number of element comparisons
of a sorting algorithms

here: count the computation steps of a Turing machine
(polynomially equivalent to other measures)
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E1.3 Decision Problems
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Decision Problems

I As before, we simplify our investigation
by restricting our attention to decision problems.

I More complex computational problems can be solved with
multiple queries for an appropriately defined decision problem
(“playing 20 questions”).

I Formally, decision problems are languages (as before), but we
use an informal “given”/“question” notation where possible.
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Example: Decision vs. General Problem (1)

Definition (Hamilton Cycle)

Let G = 〈V ,E 〉 be a (directed or undirected) graph.

A Hamilton cycle of G is a sequence of vertices in V ,
π = 〈v0, . . . , vn〉, with the following properties:

I π is a path: there is an edge from vi to vi+1 for all 0 ≤ i < n

I π is a cycle: v0 = vn
I π is simple: vi 6= vj for all i 6= j with i , j < n

I π is Hamiltonian: all nodes of V are included in π

German: Hamiltonkreis/Hamiltonzyklus
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Example: Decision vs. General Problem (2)

Example (Hamilton Cycles in Directed Graphs)

P: general problem DirHamiltonCycleGen

I Input: directed graph G = 〈V ,E 〉
I Output: a Hamilton cycle of G or a message that none exists

D: decision problem DirHamiltonCycle

I Given: directed graph G = 〈V ,E 〉
I Question: Does G contain a Hamilton cycle?

These problems are polynomially equivalent:
from a polynomial algorithm for one of the problems
one can construct a polynomial algorithm for the other problem.
(Without proof.)
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Algorithms for Decision Problems

Algorithms for decision problems:

I Where possible, we specify algorithms for decision problems
in pseudo-code.

I Since they are only yes/no questions,
we do not have to return a general result.

I Instead we use the statements
I ACCEPT to accept the given input (“yes” answer) and
I REJECT to reject it (“no” answer).

I Where we must be more formal, we use Turing machines
and the notion of accepting from chapter C7.
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E1.4 Nondeterminism
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Nondeterminism

I To develop complexity theory, we need
the algorithmic concept of nondeterminism.

I already known for Turing machines ( chapter C7):
I An NTM can have more than one possible successor

configuration for a given configuration.
I Input x is accepted if there is at least one possible computation

(configuration sequence) that leads to an end state.

I Here we analogously introduce nondeterminism
for pseudo-code.

German: Nichtdeterminismus
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Nondeterministic Algorithms

nondeterministic algorithms:

I All constructs of deterministic algorithms are also allowed in
nondeterministic algorithms: IF, WHILE, etc.

I Additionally, there is a nondeterministic assignment:
GUESS xi ∈ {0, 1}

where xi is a program variable.

German: nichtdeterministische Zuweisung
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Nondeterministic Algorithms: Acceptance

I Meaning of GUESS xi ∈ {0, 1}:
xi is assigned either the value 0 or the value 1.

I This implies that the behavior of the program
on a given input is no longer uniquely defined:
there are multiple possible execution paths.

I The program accepts a given input if at least one
execution path leads to an ACCEPT statement.

I Otherwise, the input is rejected.

Note: asymmetry between accepting and rejecting!

Note:

(cf. semi-decidability)
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More Complex GUESS Statements

I We will also guess more than one bit at a time:
GUESS x ∈ {1, 2, . . . , n}

or more generally
GUESS x ∈ S

for a set S .

I These are abbreviations and can be split into dlog2 ne
(or dlog2 |S |e) “atomic” GUESS statements.
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Example: Nondeterministic Algorithms (1)

Example (DirHamiltonCycle)

input: directed graph G = 〈V ,E 〉

start := an arbitrary node from V
current := start
remaining := V \ {start}
WHILE remaining 6= ∅:

GUESS next ∈ remaining
IF 〈current, next〉 /∈ E :

REJECT
remaining := remaining \ {next}
current := next

IF 〈current, start〉 ∈ E :
ACCEPT

ELSE:
REJECT
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Example: Nondeterministic Algorithms (2)

I With appropriate data structures, this algorithm solves
the problem in O(n log n) program steps,
where n = |V |+ |E | is the size of the input.

I How many steps would a deterministic algorithm need?
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Guess and Check

I The DirHamiltonCycle example illustrates
a general design principle for nondeterministic algorithms:

guess and check

I In general, nondeterministic algorithms can
solve a problem by first guessing a “solution”
and then verifying that it is indeed a solution.
(In the example, these two steps are interleaved.)

I If solutions to a problem can be efficiently verified,
then the problem can also be efficiently solved
if nondeterminism may be used.

German: Raten und Prüfen
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The Power of Nondeterminism

I Nondeterministic algorithms are very powerful
because they can “guess” the “correct” computation step.

I Or, interpreted differently: they go through
many possible computations “in parallel”,
and it suffices if one of them is successful.

I Can they solve problems efficiently (in polynomial time)
which deterministic algorithms cannot solve efficiently?

I This is the big question!
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Summary (1)

I Complexity theory deals with the question which problems
can be solved efficiently and which ones cannot.

I here: focus on what can be computed in polynomial time

I To formalize this, we use Turing machines,
but other formalisms are polynomially equivalent.

I We consider decision problems, but the results
directly transfer to general computational problems.
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Summary (2)

important concept: nondeterminism

I Nondeterministic algorithms can “guess”,
i. e., perform multiple computations “at the same time”.

I An input receives a “yes” answer if at least one
computation path accepts it.

I in NTMs: with nondeterministic transitions
(δ(q, a) contains multiple elements)

I in pseudo-code: with GUESS statements
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