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Overview: Course

contents of this course:

A.

Gabriele Roger (University of Basel)

background v
> mathematical foundations and proof techniques

. logic v

> How can knowledge be represented?
How can reasoning be automated?

automata theory and formal languages v
> What is a computation?

Turing computability v/

> What can be computed at all?

complexity theory
> What can be computed efficiently?

. more computability theory

> Other models of computability
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Course Overview

Gabriele Roger (University of Basel)

_|
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_|

Logic |

_|

Nondeterminism |

—| Automata Theory |

% Turing Computability|

_I

—I Polynomial Reductions |

P, NP |

—| Cook-Levin Theorem |

—| More Computability |
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—I NP-complete Problems |

May 6, 2020

4 /38



E1. Complexity Theory: Motivation and Introduction Motivation
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A Scenario (1)

Example Scenario
» You are a programmer at a logistics company.

» Your boss gives you the task of developing a program
to optimize the route of a delivery truck:

» The truck begins its route at the company depot.

» It has to visit 50 stops.

» You know the distances between all relevant locations
(stops and depot).

» Your program should compute a tour visiting all stops
and returning to the depot on a shortest route.
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A Scenario (2)

Example Scenario (ctd.)
» You work on the problem for weeks, but you do not manage
to complete the task.

» All of your attempted programs

» compute routes that are possibly suboptimal, or
» do not terminate in reasonable time (say: within a month).

» What do you say to your boss?

Gabriele Roger (University of Basel) Theory of Computer Science May 6, 2020 7 /38



E1l. Complexity Theory: Motivation and Introduction Motivation

What You Don’t Want to Say

i

“l can't find an efficient algorithm,
| guess I'm just too dumb.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2
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What You Would Like to Say

£

“l can't find an efficient algorithm,
because no such algorithm is possible!”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 2
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What Complexity Theory Allows You to Say

“l can't find an efficient algorithm,
but neither can all these famous people.”

Source: M. Garey & D. Johnson, Computers and Intractability, Freeman 1979, p. 3
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Why Complexity Theory?

Complexity Theory

Complexity theory tells us which problems
can be solved quickly (“simple problems”)
and which ones cannot (“hard problems™).

German: Komplexitatstheorie

» This is useful in practice because simple and hard problems
require different techniques to solve.

» If we can show that a problem is hard we do not need to waste
our time with the (futile) search for a “simple” algorithm.
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Why Reductions?

Reductions

An important part of complexity theory are

(polynomial) reductions that show how a given problem P
can be reduced to another problem Q.

German: Reduktionen

» useful for theoretical analysis of P and Q because
it allows us to transfer our knowledge between them

> often also useful for practical algorithms for P:
reduce P to @ and then use the best known algorithm for Q@
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Test Your Intuition! (1)

The following slide lists some graph problems.
The input is always a directed graph G = (V, E).

How difficult are the problems in your opinion?

vvyyypy

Sort the problems
from easiest (= requires least amount of time to solve)
to hardest (= requires most time to solve)

v

no justification necessary, just follow your intuition!

» anonymous and not graded
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Test Your Intuition! (2)

2]

o

©

©©0©00

Find a simple path (= without cycle)
from u € V to v € V with minimal length.
Find a simple path (= without cycle)
from u € V to v € V with maximal length.

Determine whether G is strongly connected
(every node is reachable from every other node).

Find a cycle (non-empty path from u to u for any u € V;
multiple visits of nodes are allowed).

Find a cycle that visits all nodes.
Find a cycle that visits a given node wu.
Find a path that visits all nodes without repeating a node.

Find a path that uses all edges without repeating an edge.
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E1.2 How to Measure Runtime?
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How to Measure Runtime?

> Time complexity is a way to measure how much time
it takes to solve a problem.

» How can we define such a measure appropriately?

German: Zeitkomplexitat/Zeitaufwand
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Example Statements about Runtime

Example statements about runtime:

» “Running sort /usr/share/dict/words
on the computer dakar takes 0.035 seconds.”

> “With a 1 MiB input file, sort takes
at most 1 second on a modern computer.”

» “Quicksort is faster than sorting by insertion.”
» “Sorting by insertion is slow.”

~ Very different statements with different pros and cons.
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Precise Statements vs. General Statements

Example Statement about Runtime
“Running sort /usr/share/dict/words
on the computer dakar takes 0.035 seconds.”

advantage: very precise

disadvantage: not general
» input-specific:
What if we want to sort other files?

» machine-specific:
What happens on a different computer?

P even situation-specific:
Will we get the same result tomorrow that we got today?
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General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

1. General Inputs
Instead of concrete inputs, we talk about general types of input:

> Example: runtime to sort an input of size n
in the worst case

» Example: runtime to sort an input of size n
in the average case

here: runtime for input size n in the worst case
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General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

2. lgnoring Details
Instead of exact formulas for the runtime we specify
the order of magnitude:

» Example: instead of saying that we need time

[1.2nlog n| — 4n + 100, we say that we need time O(nlogn).

» Example: instead of saying that we need time O(nlog n),
O(n?) or O(n*), we say that we need polynomial time.

here: What can be computed in polynomial time?
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General Statements about Runtime

In this course we want to make general statements
about runtime. We accomplish this in three ways:

3. Abstract Cost Measures
Instead of the runtime on a concrete computer
we consider a more abstract cost measure:
» Example: count the number of executed
machine code statements
» Example: count the number of executed
Java byte code statements
» Example: count the number of element comparisons
of a sorting algorithms
here: count the computation steps of a Turing machine
(polynomially equivalent to other measures)
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E1.3 Decision Problems
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Decision Problems

> As before, we simplify our investigation
by restricting our attention to decision problems.
» More complex computational problems can be solved with

multiple queries for an appropriately defined decision problem
(“playing 20 questions”).

» Formally, decision problems are languages (as before), but we
use an informal “given” /“question” notation where possible.
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Example: Decision vs. General Problem (1)

Definition (Hamilton Cycle)
Let G = (V, E) be a (directed or undirected) graph.
A Hamilton cycle of G is a sequence of vertices in V,
m = (v,...,Vn), with the following properties:
» 7 is a path: there is an edge from v; to vj31 forall 0 < i < n
> s acycle: vog = v,
» missimple: v; # vj forall i # jwith i,j <n
» 7 is Hamiltonian: all nodes of V' are included in 7

German: Hamiltonkreis/Hamiltonzyklus
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Example: Decision vs. General Problem (2)

Example (Hamilton Cycles in Directed Graphs)
‘P: general problem DIRHAMILTONCYCLEGEN

» Input: directed graph G = (V| E)
» Qutput: a Hamilton cycle of G or a message that none exists

D: decision problem DIRHAMILTONCYCLE

» Given: directed graph G = (V,E)

» Question: Does G contain a Hamilton cycle?
These problems are polynomially equivalent:
from a polynomial algorithm for one of the problems

one can construct a polynomial algorithm for the other problem.
(Without proof.)

Gabriele Roger (University of Basel) Theory of Computer Science May 6, 2020 25 /38



E1l. Complexity Theory: Motivation and Introduction Decision Problems

Algorithms for Decision Problems

Algorithms for decision problems:

» Where possible, we specify algorithms for decision problems
in pseudo-code.
» Since they are only yes/no questions,
we do not have to return a general result.
» Instead we use the statements
> ACCEPT to accept the given input (“yes" answer) and
> REJECT to reject it (“no" answer).
» Where we must be more formal, we use Turing machines
and the notion of accepting from chapter C7.
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E1.4 Nondeterminism
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Nondeterminism

» To develop complexity theory, we need
the algorithmic concept of nondeterminism.
» already known for Turing machines (~~ chapter C7):

» An NTM can have more than one possible successor
configuration for a given configuration.

» Input x is accepted if there is at least one possible computation
(configuration sequence) that leads to an end state.

» Here we analogously introduce nondeterminism
for pseudo-code.

German: Nichtdeterminismus
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Nondeterministic Algorithms

nondeterministic algorithms:

» All constructs of deterministic algorithms are also allowed in
nondeterministic algorithms: IF, WHILE, etc.

» Additionally, there is a nondeterministic assignment:
GUESS x; € {0,1}
where x; is a program variable.

German: nichtdeterministische Zuweisung
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Nondeterministic Algorithms: Acceptance

» Meaning of GUESS x; € {0,1}:
x; is assigned either the value 0 or the value 1.

» This implies that the behavior of the program
on a given input is no longer uniquely defined:
there are multiple possible execution paths.

» The program accepts a given input if at least one
execution path leads to an ACCEPT statement.

» Otherwise, the input is rejected.

Note: asymmetry between accepting and rejecting!
(cf. semi-decidability)
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More Complex GUESS Statements

> We will also guess more than one bit at a time:
GUESS x € {1,2,...,n}

or more generally
GUESS x e S
for a set S.

» These are abbreviations and can be split into [log, n]
(or [log, |S|]) “atomic” GUESS statements.
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Example: Nondeterministic Algorithms (1)

Example (DIRHAMILTONCYCLE)
input: directed graph G = (V, E)

start := an arbitrary node from V
current .= start
remaining := V' \ {start}
WHILE remaining # (:
GUESS next € remaining
IF (current, next) ¢ E:
REJECT
remaining = remaining \ {next}
current := next
IF (current, start) € E:
ACCEPT
ELSE:
REJECT

Gabriele Roger (University of Basel) Theory of Computer Science
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Example: Nondeterministic Algorithms (2)

» With appropriate data structures, this algorithm solves
the problem in O(nlog n) program steps,
where n = |V/| + |E| is the size of the input.

» How many steps would a deterministic algorithm need?
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Guess and Check

» The DIRHAMILTONCYCLE example illustrates
a general design principle for nondeterministic algorithms:
guess and check
» In general, nondeterministic algorithms can
solve a problem by first guessing a “solution”
and then verifying that it is indeed a solution.
(In the example, these two steps are interleaved.)

> If solutions to a problem can be efficiently verified,
then the problem can also be efficiently solved
if nondeterminism may be used.

German: Raten und Priifen
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The Power of Nondeterminism

» Nondeterministic algorithms are very powerful
because they can “guess” the “correct” computation step.

» Or, interpreted differently: they go through
many possible computations “in parallel”,
and it suffices if one of them is successful.

» Can they solve problems efficiently (in polynomial time)
which deterministic algorithms cannot solve efficiently?

» This is the big question!
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Summary (1)

» Complexity theory deals with the question which problems
can be solved efficiently and which ones cannot.

» here: focus on what can be computed in polynomial time

» To formalize this, we use Turing machines,
but other formalisms are polynomially equivalent.

» We consider decision problems, but the results
directly transfer to general computational problems.
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Summary (2)

important concept: nondeterminism

» Nondeterministic algorithms can “guess”,
i.e., perform multiple computations “at the same time”.

P> An input receives a “yes” answer if at least one
computation path accepts it.

» in NTMs: with nondeterministic transitions
(6(q, a) contains multiple elements)

» in pseudo-code: with GUESS statements
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