

Theory of Computer Science

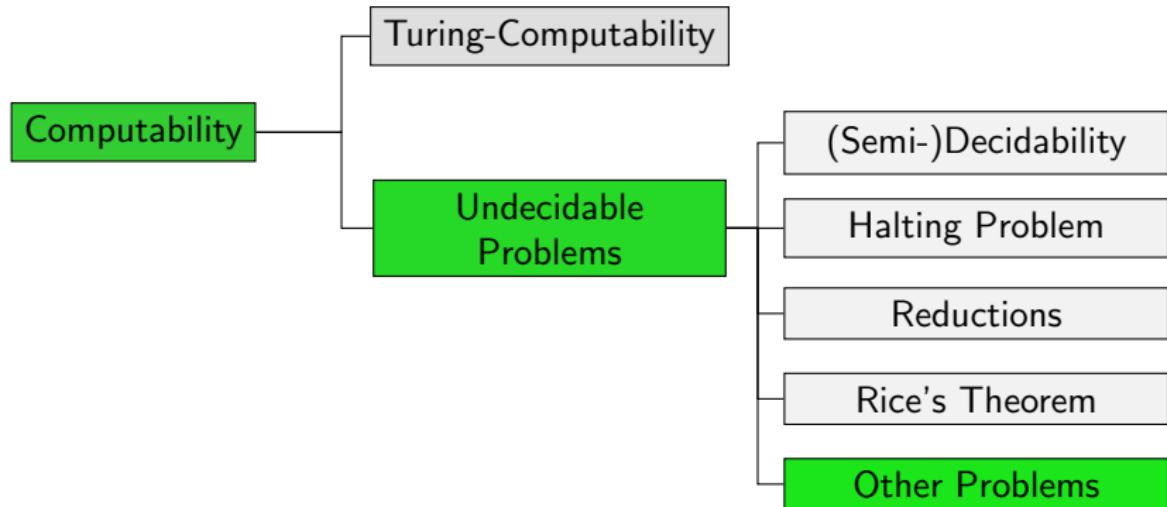
D5. Post Correspondence Problem

Gabriele Röger

University of Basel

May 4, 2020

Overview: Computability Theory



Post Correspondence Problem

How to prove undecidability?

- statements on the computed function of a TM/an algorithm
- other problems

How to prove undecidability?

- statements on the computed function of a TM/an algorithm
→ easiest with Rice' theorem
- other problems

How to prove undecidability?

- statements on the computed function of a TM/an algorithm
→ easiest with Rice' theorem
- other problems
 - directly with the definition of undecidability
→ usually quite complicated

How to prove undecidability?

- statements on the computed function of a TM/an algorithm
→ easiest with Rice' theorem
- other problems
 - directly with the definition of undecidability
→ usually quite complicated
 - reduction from an undecidable problem, e.g.
→ (general) halting problem (H)
→ halting problem on the empty tape (H_0)

More options for reduction proofs?

:(all halting problems are quite similar

More options for reduction proofs?

- :(all halting problems are quite similar
 - We want a wider selection for reduction proofs
 - Is there some problem that is different in flavor?

More options for reduction proofs?

- :(all halting problems are quite similar
 - We want a wider selection for reduction proofs
 - Is there some problem that is different in flavor?

Post correspondence problem (named after mathematician Emil Leon Post)

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

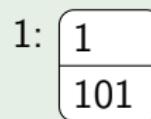
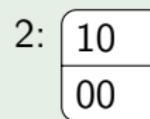
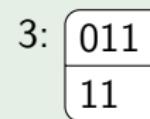
011
11

(an infinite number of each kind)

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"



(an infinite number of each kind)

Question: Sequence of dominos such that
upper and lower row match (= are equal)

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

011
11

(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)

1
101

1

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

011
11

(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)

1
101

1

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

011
11

(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)

1
101

1

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

011
11

(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)

1	011
101	11

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

011
11

(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)

1	011
101	11

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

011
11

(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)

1	011
101	11

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

011
11

(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)

1	011
101	11

1 (3)

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

1:

1
101

2:

10
00

3:

011
11

(an infinite number of each kind)

Question: Sequence of dominos such that

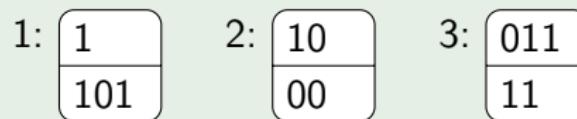
upper and lower row match (= are equal)

1	011	10
101	11	00
1	3	2

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

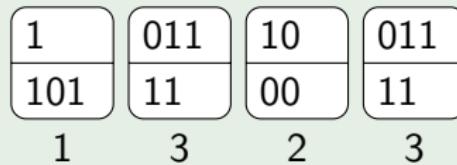
Given: different kinds of "dominos"



(an infinite number of each kind)

Question: Sequence of dominos such that

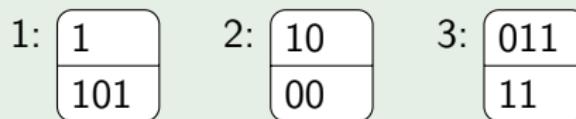
upper and lower row match (= are equal)



Post Correspondence Problem: Example

Example (Post Correspondence Problem)

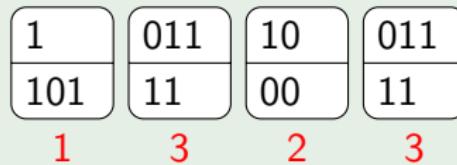
Given: different kinds of "dominos"



(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)



Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words

$(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$, where $x_i, y_i \in \Sigma^+$
(for an arbitrary alphabet Σ)

Question: Is there a sequence

$i_1, i_2, \dots, i_n \in \{1, \dots, k\}$, $n \geq 1$,

with $x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}$?

A **solution** of the correspondence problem is such a sequence i_1, \dots, i_n , which we call a **match**.

Given-Question Form vs. Definition as Set

So far: problems defined as sets

Now: definition in **Given-Question form**

Definition (new problem P)

Given: Instance \mathcal{I}

Question: Does \mathcal{I} have a specific property?

Given-Question Form vs. Definition as Set

So far: problems defined as sets

Now: definition in **Given-Question form**

Definition (new problem P)

Given: Instance \mathcal{I}

Question: Does \mathcal{I} have a specific property?

corresponds to definition

Definition (new problem P)

The problem P is the language

$P = \{w \mid w \text{ encodes an instance } \mathcal{I} \text{ with the required property}\}$.

PCP Definition as Set

We can alternatively define PCP as follows:

Definition (Post Correspondence Problem PCP)

Das Post Correspondence Problem PCP ist the set

$\text{PCP} = \{w \mid w \text{ encodes a sequence of pairs of words}$
 $(x_1, y_1), (x_2, y_2), \dots, (x_k, y_k)$, for which there is a
sequence $i_1, i_2, \dots, i_n \in \{1, \dots, k\}$
such that $x_{i_1}x_{i_2} \dots x_{i_n} = y_{i_1}y_{i_2} \dots y_{i_n}\}$.

(Un-)Decidability of PCP

Post Correspondence Problem

PCP cannot be so hard, huh?

Post Correspondence Problem

PCP cannot be so hard, huh?

– Is it?

Post Correspondence Problem

PCP cannot be so hard, huh?

– Is it?

1101	0110	1
1	11	110

Formally: $K = ((1101, 1), (0110, 11), (1, 110))$

Post Correspondence Problem

PCP cannot be so hard, huh?

– Is it?

1101	0110	1
1	11	110

Formally: $K = ((1101, 1), (0110, 11), (1, 110))$
→ Shortest match has length 252!

Post Correspondence Problem

PCP cannot be so hard, huh?

– Is it?

1101	0110	1
1	11	110

Formally: $K = ((1101, 1), (0110, 11), (1, 110))$
→ Shortest match has length 252!

10	0	100
0	001	1

Formally: $K = ((10, 0), (0, 001), (100, 1))$

Post Correspondence Problem

PCP cannot be so hard, huh?

– Is it?

1101	0110	1
1	11	110

Formally: $K = ((1101, 1), (0110, 11), (1, 110))$
→ Shortest match has length 252!

10	0	100
0	001	1

Formally: $K = ((10, 0), (0, 001), (100, 1))$
→ Unsolvable

PCP: Semi-Decidability

Theorem (Semi-Decidability of PCP)

PCP *is semi-decidable*.

PCP: Semi-Decidability

Theorem (Semi-Decidability of PCP)

PCP is *semi-decidable*.

Proof.

Semi-decision procedure for input w :

- If w encodes a sequence $(x_1, y_1), \dots, (x_k, y_k)$ of pairs of words:
Test systematically longer and longer sequences i_1, i_2, \dots, i_n
whether they represent a match.
If yes, terminate and return “yes”.
- If w does not encode such a sequence: enter an infinite loop.

If $w \in \text{PCP}$ then the procedure terminates with “yes”,
otherwise it does not terminate. □

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP *is undecidable*.

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is *undecidable*.

Proof via an intermediate other problem

modified PCP (MPCP)

- ① Reduce MPCP to PCP ($\text{MPCP} \leq \text{PCP}$)
- ② Reduce halting problem to MPCP ($H \leq \text{MPCP}$)

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is *undecidable*.

Proof via an intermediate other problem

modified PCP (MPCP)

- ① Reduce MPCP to PCP ($\text{MPCP} \leq \text{PCP}$)
- ② Reduce halting problem to MPCP ($H \leq \text{MPCP}$)

→ Let's get started...

MPCP: Definition

Definition (Modified Post Correspondence Problem MPCP)

Given: Sequence of word pairs as for PCP

Question: Is there a match $i_1, i_2, \dots, i_n \in \{1, \dots, k\}$
with $i_1 = 1$?

Reducibility of MPCP to PCP(1)

Lemma

$\text{MPCP} \leq \text{PCP}.$

Reducibility of MPCP to PCP(1)

Lemma

$\text{MPCP} \leq \text{PCP}.$

Proof.

Let $\#, \$ \notin \Sigma$. For word $w = a_1 a_2 \dots a_m \in \Sigma^+$ define

$$\bar{w} = \# a_1 \# a_2 \# \dots \# a_m \#$$

$$\grave{w} = \# a_1 \# a_2 \# \dots \# a_m$$

$$\acute{w} = a_1 \# a_2 \# \dots \# a_m \#$$

...

Reducibility of MPCP to PCP(1)

Lemma

$\text{MPCP} \leq \text{PCP}.$

Proof.

Let $\#, \$ \notin \Sigma$. For word $w = a_1 a_2 \dots a_m \in \Sigma^+$ define

$$\bar{w} = \# a_1 \# a_2 \# \dots \# a_m \#$$

$$\grave{w} = \# a_1 \# a_2 \# \dots \# a_m$$

$$\acute{w} = a_1 \# a_2 \# \dots \# a_m \#$$

For input $C = ((x_1, y_1), \dots, (x_k, y_k))$ define

$$f(C) = ((\bar{x}_1, \grave{y}_1), (\acute{x}_1, \grave{y}_1), (\acute{x}_2, \grave{y}_2), \dots, (\acute{x}_k, \grave{y}_k), (\$, \#\$))$$

...

Reducibility of MPCP to PCP(2)

Proof (continued).

$$f(C) = ((\bar{x}_1, \bar{y}_1), (\acute{x}_1, \acute{y}_1), (\acute{x}_2, \acute{y}_2), \dots, (\acute{x}_k, \acute{y}_k), (\$, \#\$))$$

Function f is **computable**, and can suitably get extended to a **total** function. It holds that

C has a solution with $i_1 = 1$ iff $f(C)$ has a solution:

Reducibility of MPCP to PCP(2)

Proof (continued).

$$f(C) = ((\bar{x}_1, \bar{y}_1), (\acute{x}_1, \acute{y}_1), (\acute{x}_2, \acute{y}_2), \dots, (\acute{x}_k, \acute{y}_k), (\$, \#\$))$$

Function f is **computable**, and can suitably get extended to a **total** function. It holds that

C has a solution with $i_1 = 1$ iff $f(C)$ has a solution:

Let $1, i_2, i_3, \dots, i_n$ be a solution for C . Then $1, i_2 + 1, \dots, i_n + 1, k + 2$ is a solution for $f(C)$.

Reducibility of MPCP to PCP(2)

Proof (continued).

$$f(C) = ((\bar{x}_1, \bar{y}_1), (\acute{x}_1, \acute{y}_1), (\acute{x}_2, \acute{y}_2), \dots, (\acute{x}_k, \acute{y}_k), (\$, \#\$))$$

Function f is **computable**, and can suitably get extended to a **total** function. It holds that

C has a solution with $i_1 = 1$ iff $f(C)$ has a solution:

Let $1, i_2, i_3, \dots, i_n$ be a solution for C . Then

$1, i_2 + 1, \dots, i_n + 1, k + 2$ is a solution for $f(C)$.

If i_1, \dots, i_n is a match for $f(C)$, then (due to the construction of the word pairs) there is a $m \leq n$ such that $i_1 = 1, i_m = k + 2$ and $i_j \in \{2, \dots, k + 1\}$ for $j \in \{2, \dots, m - 1\}$. Then

$1, i_2 - 1, \dots, i_{m-1} - 1$ is a solution for C .

Reducibility of MPCP to PCP(2)

Proof (continued).

$$f(C) = ((\bar{x}_1, \bar{y}_1), (\acute{x}_1, \acute{y}_1), (\acute{x}_2, \acute{y}_2), \dots, (\acute{x}_k, \acute{y}_k), (\$, \#\$))$$

Function f is **computable**, and can suitably get extended to a **total** function. It holds that

C has a solution with $i_1 = 1$ iff $f(C)$ has a solution:

Let $1, i_2, i_3, \dots, i_n$ be a solution for C . Then

$1, i_2 + 1, \dots, i_n + 1, k + 2$ is a solution for $f(C)$.

If i_1, \dots, i_n is a match for $f(C)$, then (due to the construction of the word pairs) there is a $m \leq n$ such that $i_1 = 1, i_m = k + 2$ and $i_j \in \{2, \dots, k + 1\}$ for $j \in \{2, \dots, m - 1\}$. Then

$1, i_2 - 1, \dots, i_{m-1} - 1$ is a solution for C .

$\Rightarrow f$ is a reduction from MPCP to PCP.

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP *is undecidable*.

Proof via an intermediate other problem
modified PCP (MPCP)

- ➊ Reduce MPCP to PCP ($\text{MPCP} \leq \text{PCP}$)
- ➋ Reduce halting problem to MPCP ($H \leq \text{MPCP}$)

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP *is undecidable*.

Proof via an intermediate other problem

modified PCP (MPCP)

- ① Reduce MPCP to PCP ($\text{MPCP} \leq \text{PCP}$) ✓
- ② Reduce halting problem to MPCP ($H \leq \text{MPCP}$)

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP *is undecidable*.

Proof via an intermediate other problem
modified PCP (MPCP)

- ① Reduce MPCP to PCP ($\text{MPCP} \leq \text{PCP}$) ✓
- ② Reduce halting problem to MPCP ($H \leq \text{MPCP}$)

Reducibility of H to MPCP(1)

Lemma

$H \leq \text{MPCP}.$

Proof.

Goal: Construct for Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, \square, E)$ and word $w \in \Sigma^*$ an MPCP instance $C = ((x_1, y_1), \dots, (x_k, y_k))$ such that

M started on w terminates iff $C \in \text{MPCP}.$

...

Reducibility of H to MPCP(2)

Proof (continued).

Idea:

- Sequence of words describes sequence of configurations of the TM
- “ x -row” follows “ y -row”
 $x : \boxed{\# \ c_0 \ # \ c_1 \ # \ c_2 \ #}$
 $y : \boxed{\# \ c_0 \ # \ c_1 \ # \ c_2 \ # \ c_3 \ #}$
- Configurations get mostly just copied, only the area around the head changes.
- After a terminating configuration has been reached: make row equal by deleting the configuration.

...

Reducibility of H to MPCP(3)

Proof (continued).

Alphabet of C is $\Gamma \cup Q \cup \{\#\}$.

1. Pair: $(\#, \# \square q_0 w \#)$

Other pairs:

- ① copy: (a, a) for all $a \in \Gamma \cup \{\#\}$
- ② transition:

$(qa, q'c)$ if $\delta(q, a) = (q', c, N)$

(qa, cq') if $\delta(q, a) = (q', c, R)$

$(bqa, q'bc)$ if $\delta(q, a) = (q', c, L)$ for all $b \in \Gamma$

$(\#qa, \#q' \square c)$ if $\delta(q, a) = (q', c, L)$

Reducibility of H to MPCP(4)

Proof (continued).

$(q\#, q'c\#)$ if $\delta(q, \square) = (q', c, N)$

$(q\#, cq'\#)$ if $\delta(q, \square) = (q', c, R)$

$(bq\#, q'bc\#)$ if $\delta(q, \square) = (q', c, L)$ for all $b \in \Gamma$

- ③ deletion: (aq_e, q_e) and (q_ea, q_e) for all $a \in \Gamma$ and $q_e \in E$
- ④ finish: $(q_e\#\#, \#)$ for all $q_e \in E$

...

Reducibility of H to MPCP(5)

Proof (continued).

“ \Rightarrow ” If M terminates on input w , there is a sequence of c_0, \dots, c_t of configurations with

- $c_0 = \square q_0 w$ is the start configuration
- c_t is an end configuration
($c_t = uq_e v$ mit $u, v \in \Gamma^*$ and $q_e \in E$)
- $c_i \vdash c_{i+1}$ for $i = 0, 1, \dots, t - 1$

...

Reducibility of H to MPCP(5)

Proof (continued).

“ \Rightarrow ” If M terminates on input w , there is a sequence of c_0, \dots, c_t of configurations with

- $c_0 = \square q_0 w$ is the start configuration
- c_t is an end configuration
($c_t = uq_e v$ mit $u, v \in \Gamma^*$ and $q_e \in E$)
- $c_i \vdash c_{i+1}$ for $i = 0, 1, \dots, t-1$

Then C has a match with the overall word

$$\#c_0\#c_1\#\dots\#c_t\#c'_t\#c''_t\#\dots\#q_e\#\#$$

Up to c_t : “‘x-row’’ follows “‘y-row’’

From c'_t : deletion of symbols adjacent to q_e .

...

Reducibility of H to MPCP(6)

Proof (continued).

“ \Leftarrow ” If C has a solution, it has the form

$$\#c_0\#c_1\#\dots\#c_n\#\#,$$

with $c_0 = \square q_0 w$. Moreover, there is an $\ell \leq n$, such that an end state q_e occurs for the first time in c_ℓ .

All c_i for $i \leq \ell$ are configurations of M and $c_i \vdash c_{i+1}$ for $i \in \{0, \dots, \ell - 1\}$.

c_0, \dots, c_ℓ is hence the sequence of configurations of M on input w , which shows that the TM terminates. □

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP *is undecidable*.

Proof via an intermediate other problem
modified PCP (MPCP)

- ① Reduce MPCP to PCP ($\text{MPCP} \leq \text{PCP}$) ✓
- ② Reduce halting problem to MPCP ($H \leq \text{MPCP}$)

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is *undecidable*.

Proof via an intermediate other problem

modified PCP (MPCP)

- ① Reduce MPCP to PCP ($\text{MPCP} \leq \text{PCP}$) ✓
- ② Reduce halting problem to MPCP ($H \leq \text{MPCP}$) ✓

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is *undecidable*.

Proof via an intermediate other problem
modified PCP (MPCP)

- ① Reduce MPCP to PCP ($\text{MPCP} \leq \text{PCP}$) ✓
- ② Reduce halting problem to MPCP ($H \leq \text{MPCP}$) ✓

Proof.

Due to $H \leq \text{MPCP}$ and $\text{MPCP} \leq \text{PCP}$ it holds that $H \leq \text{PCP}$.
Since H is undecidable, also PCP must be undecidable. □

PCP with $\Sigma = \{0, 1\}$

Theorem

The Post correspondence problem is already undecidable if the alphabet is restricted to $\{0, 1\}$.

Proof by reduction from the general PCP.

Further Undecidable Problems

And What Else?

- Here we conclude our discussion of undecidable problems.
- Many more undecidable problems exist.
- In this section, we briefly discuss some further classical results.

Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G_1 and G_2 , ...

- ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$?
- ... is $|\mathcal{L}(G_1) \cap \mathcal{L}(G_2)| = \infty$?
- ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2)$ context-free?
- ... is $\mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$?
- ... is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?

Given a context-sensitive grammar G , ...

- ... is $\mathcal{L}(G) = \emptyset$?
- ... is $|\mathcal{L}(G)| = \infty$?

~ all undecidable by reduction from PCP
(see Schöning, Chapter 2.8)

Gödel's First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An **arithmetic formula** is a closed predicate logic formula using

- constant symbols 0 and 1,
- function symbols + and \cdot , and
- equality ($=$) as the only relation symbols.

It is called **true** if it is true under the usual interpretation of 0, 1, + and \cdot over \mathbb{N}_0 .

German: arithmetische Formel

Beispiel: $\forall x \exists y \forall z (((x \cdot y) = z) \wedge ((1 + x) = (x \cdot y)))$

Gödel's First Incompleteness Theorem (2)

Gödel's First Incompleteness Theorem

The problem of **deciding if a given arithmetic formula is true** is undecidable.

Moreover, neither it nor its complement are semi-decidable.

As a consequence, there exists no sound and complete proof system for arithmetic formulas.

German: erster Gödelscher Unvollständigkeitssatz

Summary

Summary

- Post Correspondence Problem:
Find a sequence of word pairs s.t. the concatenation of all first components equals the one of all second components.
- The Post Correspondence Problem is **semi-decidable** but **not decidable**.

What's Next?

contents of this course:

- A. **background ✓**
 - ▷ mathematical foundations and proof techniques
- B. **logic ✓**
 - ▷ How can knowledge be represented?
 - How can reasoning be automated?
- C. **automata theory and formal languages ✓**
 - ▷ What is a computation?
- D. **Turing computability**
 - ▷ What can be computed at all?
- E. **complexity theory**
 - ▷ What can be computed efficiently?
- F. **more computability theory**
 - ▷ Other models of computability

What's Next?

contents of this course:

- A. **background ✓**
 - ▷ mathematical foundations and proof techniques
- B. **logic ✓**
 - ▷ How can knowledge be represented?
 - How can reasoning be automated?
- C. **automata theory and formal languages ✓**
 - ▷ What is a computation?
- D. **Turing computability ✓**
 - ▷ What can be computed at all?
- E. **complexity theory**
 - ▷ What can be computed efficiently?
- F. **more computability theory**
 - ▷ Other models of computability