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How to prove undecidability?

statements on the computed function of a TM/an algorithm

→ easiest with Rice’ theorem

other problems

directly with the definition of undecidability
→ usually quite complicated
reduction from an undecidable problem, e.g.
→ (general) halting problem (H)
→ halting problem on the empty tape (H0)
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More options for reduction proofs?

/ all halting problems are quite similar

→ We want a wider selection for reduction proofs
→ Is there some problem that is different in flavor?

Post correspondence problem
(named after mathematician Emil Leon Post)
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Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of ”‘dominos”’

1

101

1: 10

00

2: 011

11

3:

(an infinite number of each kind)

Question: Sequence of dominos such that

upper and lower row match (= are equal)

1
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Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words
(x1, y1), (x2, y2), . . . , (xk , yk), where xi , yi ∈ Σ+

(for an arbitrary alphabet Σ)

Question: Is there a sequence
i1, i2, . . . , in ∈ {1, . . . , k}, n ≥ 1,
with xi1xi2 . . . xin = yi1yi2 . . . yin?

A solution of the correspondence problem is such a sequence
i1, . . . , in, which we call a match.
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Given-Question Form vs. Definition as Set

So far: problems defined as sets
Now: definition in Given-Question form

Definition (new problem P)

Given: Instance I
Question: Does I have a specific property?

corresponds to definition

Definition (new problem P)

The problem P is the language
P = {w | w encodes an instance I with the required property}.
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PCP Definition as Set

We can alternatively define PCP as follows:

Definition (Post Correspondence Problem PCP)

Das Post Correspondence Problem PCP is the set

PCP = {w | w encodes a sequence of pairs of words

(x1, y1), (x2, y2), . . . , (xk , yk), for which there is a

sequence i1, i2, . . . , in ∈ {1, . . . , k}
such that xi1xi2 . . . xin = yi1yi2 . . . yin}.
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(Un-)Decidability of PCP
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Post Correspondence Problem

PCP cannot be so hard, huh?

– Is it?

1101

1

0110

11

1

110

Formally: K = ((1101, 1), (0110, 11), (1, 110))
→ Shortest match has length 252!

10

0

0

001

100

1
Formally: K = ((10, 0), (0, 001), (100, 1))
→ Unsolvable
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PCP: Semi-Decidability

Theorem (Semi-Decidability of PCP)

PCP is semi-decidable.

Proof.

Semi-decision procedure for input w :

If w encodes a sequence (x1, y1), . . . , (xk , yk) of pairs of words:
Test systematically longer and longer sequences i1, i2, . . . , in
whether they represent a match.
If yes, terminate and return “yes”.

If w does not encode such a sequence: enter an infinite loop.

If w ∈ PCP then the procedure terminates with “yes”,
otherwise it does not terminate.
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PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem
modified PCP (MPCP)

1 Reduce MPCP to PCP (MPCP ≤ PCP)

�

2 Reduce halting problem to MPCP (H ≤ MPCP)

�

Proof.

Due to H ≤ MPCP and MPCP ≤ PCP it holds that H ≤ PCP.
Since H is undecidable, also PCP must be undecidable.
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PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem
modified PCP (MPCP)

1 Reduce MPCP to PCP (MPCP ≤ PCP)

�

2 Reduce halting problem to MPCP (H ≤ MPCP)

�

→ Let’s get started. . .

Proof.

Due to H ≤ MPCP and MPCP ≤ PCP it holds that H ≤ PCP.
Since H is undecidable, also PCP must be undecidable.
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MPCP: Definition

Definition (Modified Post Correspondence Problem MPCP)

Given: Sequence of word pairs as for PCP

Question: Is there a match i1, i2, . . . , in ∈ {1, . . . , k}
with i1 = 1?
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Reducibility of MPCP to PCP(1)

Lemma

MPCP ≤ PCP.

Proof.

Let #, $ 6∈ Σ. For word w = a1a2 . . . am ∈ Σ+ define

w̄ = #a1#a2# . . .#am#

ẁ = #a1#a2# . . .#am

ẃ = a1#a2# . . .#am#

For input C = ((x1, y1), . . . , (xk , yk)) define
f (C ) = ((x̄1, ỳ1), (x́1, ỳ1), (x́2, ỳ2), . . . , (x́k , ỳk), ($,#$))

. . .
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Reducibility of MPCP to PCP(2)

Proof (continued).

f (C ) = ((x̄1, ỳ1), (x́1, ỳ1), (x́2, ỳ2), . . . , (x́k , ỳk), ($,#$))

Function f is computable, and can suitably get extended
to a total function. It holds that
C has a solution with i1 = 1 iff f (C ) has a solution:

Let 1, i2, i3, . . . , in be a solution for C . Then
1, i2 + 1, . . . , in + 1, k + 2 is a solution for f (C ).

If i1, . . . , in is a match for f (C ), then (due to the construction of
the word pairs) there is a m ≤ n such that i1 = 1, im = k + 2 and
ij ∈ {2, . . . , k + 1} for j ∈ {2, . . . ,m − 1}. Then
1, i2 − 1, . . . , im−1 − 1 is a solution for C .

⇒ f is a reduction from MPCP to PCP.
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PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem
modified PCP (MPCP)

1 Reduce MPCP to PCP (MPCP ≤ PCP)

�

2 Reduce halting problem to MPCP (H ≤ MPCP)

�

Proof.

Due to H ≤ MPCP and MPCP ≤ PCP it holds that H ≤ PCP.
Since H is undecidable, also PCP must be undecidable.
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Reducibility of H to MPCP(1)

Lemma

H ≤ MPCP.

Proof.

Goal: Construct for Turing machine M = (Q,Σ, Γ, δ, q0,�,E ) and
word w ∈ Σ∗ an MPCP instance C = ((x1, y1), . . . , (xk , yk)) such
that

M started on w terminates iff C ∈ MPCP.

. . .
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Reducibility of H to MPCP(2)

Proof (continued).

Idea:

Sequence of words describes
sequence of configurations of the TM

“x-row” follows “y -row” x : # c0 # c1 # c2 #

y : # c0 # c1 # c2 # c3 #

Configurations get mostly just copied,
only the area around the head changes.

After a terminating configuration has been reached:
make row equal by deleting the configuration.

. . .
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Reducibility of H to MPCP(3)

Proof (continued).

Alphabet of C is Γ ∪ Q ∪ {#}.

1. Pair: (#,#�q0w#)

Other pairs:

1 copy: (a, a) for all a ∈ Γ ∪ {#}
2 transition:

(qa, q′c) if δ(q, a) = (q′, c,N)

(qa, cq′) if δ(q, a) = (q′, c,R)

(bqa, q′bc) if δ(q, a) = (q′, c, L) for all b ∈ Γ

(#qa,#q′�c) if δ(q, a) = (q′, c, L)

. . .
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Reducibility of H to MPCP(4)

Proof (continued).

(q#, q′c#) if δ(q,�) = (q′, c ,N)

(q#, cq′#) if δ(q,�) = (q′, c ,R)

(bq#, q′bc#) if δ(q,�) = (q′, c , L) for all b ∈ Γ

3 deletion: (aqe , qe) and (qea, qe) for all a ∈ Γ and qe ∈ E

4 finish: (qe##,#) for all qe ∈ E

. . .
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Reducibility of H to MPCP(5)

Proof (continued).

“⇒” If M terminates on input w , there is a sequence of c0, . . . , ct
of configurations with

c0 = �q0w is the start configuration

ct is an end configuration
(ct = uqev mit u, v ∈ Γ∗ and qe ∈ E )

ci ` ci+1 for i = 0, 1, . . . , t − 1

Then C has a match with the overall word

#c0#c1# . . .#ct#c ′t#c ′′t # . . .#qe##

Up to ct : ”‘x-row”’ follows ”‘y -row”’

From c ′t : deletion of symbols adjacent to qe .

. . .
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From c ′t : deletion of symbols adjacent to qe . . . .
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Reducibility of H to MPCP(6)

Proof (continued).

“⇐” If C has a solution, it has the form

#c0#c1# . . .#cn##,

with c0 = �q0w . Moreover, there is an ` ≤ n, such that an end
state qe occurs for the first time in c`.
All ci for i ≤ ` are configurations of M and ci ` ci+1 for
i ∈ {0, . . . , `− 1}.
c0, . . . , c` is hence the sequence of configurations of M on input w ,
which shows that the TM terminates.
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PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem
modified PCP (MPCP)

1 Reduce MPCP to PCP (MPCP ≤ PCP)�
2 Reduce halting problem to MPCP (H ≤ MPCP)

�

Proof.

Due to H ≤ MPCP and MPCP ≤ PCP it holds that H ≤ PCP.
Since H is undecidable, also PCP must be undecidable.
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PCP with Σ = {0, 1}

Theorem

The Post correspondence problem is already undecidable if the
alphabet is restricted to {0, 1}.

Proof by reduction from the general PCP.
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Further Undecidable Problems
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And What Else?

Here we conclude our discussion of undecidable problems.

Many more undecidable problems exist.

In this section, we briefly discuss some further classical results.
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Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G1 and G2, . . .

. . . is L(G1) ∩ L(G2) = ∅?

. . . is |L(G1) ∩ L(G2)| =∞?

. . . is L(G1) ∩ L(G2) context-free?

. . . is L(G1) ⊆ L(G2)?

. . . is L(G1) = L(G2)?

Given a context-sensitive grammar G , . . .

. . . is L(G ) = ∅?

. . . is |L(G )| =∞?

; all undecidable by reduction from PCP

;

(see Schöning, Chapter 2.8)
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Gödel’s First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An arithmetic formula is a closed predicate logic formula using

constant symbols 0 and 1,

function symbols + and ·, and

equality (=) as the only relation symbols.

It is called true if it is true under the usual interpretation
of 0, 1, + and · over N0.

German: arithmetische Formel

Beispiel: ∀x∃y∀z(((x · y) = z) ∧ ((1 + x) = (x · y)))
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Gödel’s First Incompleteness Theorem (2)

Gödel’s First Incompleteness Theorem

The problem of deciding if a given arithmetic formula is true
is undecidable.

Moreover, neither it nor its complement are semi-decidable.

As a consequence, there exists no sound and complete
proof system for arithmetic formulas.

German: erster Gödelscher Unvollständigkeitssatz
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Summary
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Summary

Post Correspondence Problem:
Find a sequence of word pairs s.t. the concatenation of all
first components equals the one of all second components.

The Post Correspondence Problem is semi-decidable
but not decidable.
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What’s Next?

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages X
. What is a computation?

D. Turing computability

X

. What can be computed at all?

E. complexity theory
. What can be computed efficiently?

F. more computability theory
. Other models of computability
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