Theory of Computer Science
D4. Halting Problem Variants & Rice’'s Theorem

Gabriele Roger
University of Basel

April 29, 2020

Other Halting Problem Variants

00000000

Other Halting Problem Variants

Other Halting Problem Variants
0e000000

Overview: Computability Theory

Turing-Computability |

(Semi-)Decidability |

Reductions

Rice's Theorem |

Other Halting Problem Variants
[e]e] lele]elele)

Reminder: Special Halting Problem

Definition (Special Halting Problem)

Summar

The special halting problem or self-application problem
is the language

K ={w € {0,1}* | M,, started on w terminates}.

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem

Other Halting Problem Variants

Summar

[e]e]e] le]elele)

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

German: allgemeines Halteproblem, Halteproblem

Other Halting Problem Variants
[e]e]e] le]elele)

Summar

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

German: allgemeines Halteproblem, Halteproblem

Note: H is semi-decidable. (Why?)

Other Halting Problem Variants ic Summar

[e]e]e] le]elele)

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

German: allgemeines Halteproblem, Halteproblem

Note: H is semi-decidable. (Why?)

Theorem (Undecidability of General Halting Problem)

The general halting problem is undecidable.

Intuition: if the special case K is not decidable,
then the more general problem H definitely cannot be decidable.

Summary

Other Halting Problem Variants
00008000

General Halting Problem (2)

Proof.

We show K < H.

We define f : {0,1}* — {0, 1, #}* as f(w) := wiw.
f is clearly total and computable, and

we K
iff M,, started on w terminates
iff w#tw € H
iff f(w) € H.

Other Halting Problem Variants ice's re Summary

[e]e]e]e] lelele)

General Halting Problem (2)

Proof.
We show K < H.
We define f : {0,1}* — {0, 1, #}* as f(w) := wiw.

f is clearly total and computable, and

we K
iff M,, started on w terminates
iff w#tw € H
iff f(w) € H.

Therefore f is a reduction from K to H.
Because K is undecidable, H is also undecidable.]

Other Halting Problem Variants
00000e00

Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Other Halting Problem Variants
00000e00

Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Note: Hp is semi-decidable. (\Why?)

Other Halting Problem Variants
00000e00

Halting Problem on Empty Tape

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Note: Hp is semi-decidable. (\Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)
The halting problem on the empty tape is undecidable.

Other Halting Problem Variants i¢ Summar
00000000 00

Halting Problem on Empty Tape (2)

We show H < Hj.

Other Halting Problem Variants Summary
00000080 ofe

Halting Problem on Empty Tape

Proof.

We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*

that computes the word f(z) for a given z € {0, 1, #}* as follows:

Other Halting Problem Variants Summary
00000080 ofo

Halting Problem on Empty Tape

Proof.
We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*
that computes the word f(z) for a given z € {0, 1, #}* as follows:

m Test if z has the form w#x with w,x € {0, 1}*.

m If not, return any word that is not in Hy
(e.g., encoding of a TM that instantly starts an endless loop).

m If yes, split z into w and x.

Other Halting Problem Variants Summary

[e]e]e]e]e]e] Jo)

Halting Problem on Empty Tape

Proof.

We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*

that computes the word f(z) for a given z € {0, 1, #}* as follows:
m Test if z has the form w#x with w,x € {0, 1}*.

m If not, return any word that is not in Hy
(e.g., encoding of a TM that instantly starts an endless loop).

m If yes, split z into w and x.
m Decode w toa TM M.

Other Halting Problem Variants

0000000

Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M; that behaves as follows:
m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

Other Halting Problem Variants

0000000

Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

m Construct TM M that first runs M; and then M>.

Other Halting Problem Variants

0000000

Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

m Construct TM M that first runs M; and then M>.
m Return the encoding of M.

Other Halting Problem Variants
0000000@

Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

m Construct TM M that first runs M; and then M>.
m Return the encoding of M.

f is total and (with some effort) computable. Also:

z € H iff z= w#x and M,, run on x terminates
iff Mg (,) started on empty tape terminates
iff £(z) € Ho

~» H < Hp ~~ Hp undecidable

Rice's Theorem

®000000000000

Rice's Theorem

Rice's Theorem
0®00000000000

Overview: Computability Theory

Turing-Computability |

(Semi-)Decidability |

Halting Problem |

Reductions |

g Problem Variants Rice's Theorem

O0@0000000000

Rice's Theorem (1)

m We have shown that a number of (related) problems
are undecidable:

m special halting problem K
m general halting problem H
m halting problem on empty tape Hy

m Many more results of this type could be shown.

m Instead, we prove a much more general result,
Rice's theorem, which shows that a very large class
of different problems are undecidable.

m Rice's theorem can be summarized informally as:
every non-trivial question about what a given Turing machine
computes is undecidable.

Other Halting Problem Variants Rice's Theorem Summary

YoleYole): O00@000000000

Rice's Theorem (2)

Theorem (Rice's Theorem)

Let R be the class of all computable functions.
Let S be an arbitrary subset of R except S =) or S = R.
Then the language

C(S) = {w € {0, 1}" | the function computed by M,, is in S}

is undecidable.

German: Satz von Rice

Question: why the restriction to S # () and S # R?

Extension (without proof): in most cases neither C(S) nor C(S) is
semi-decidable. (But there are sets S for which one of the two
languages is semi-decidable.)

g Problem Variants Rice's Theorem
0000®00000000

Rice's Theorem (3)

Let © be the function that is undefined everywhere.

g Problem Variants Rice's Theorem
0000®00000000

Rice's Theorem (3)

Proof.
Let © be the function that is undefined everywhere.

Case distinction:

Case 1: QeS8

Rice's Theorem Summar

0O000@00000000

Rice's Theorem (3)

Proof.
Let © be the function that is undefined everywhere.

Case distinction:

Case 1: QeS8

Let g € R\ S be an arbitrary computable function
outside of S (exists because S C R and S # R).

Halting Problem Variants Rice's Theorem Summary
00 0000®00000000

Rice's Theorem (3)

Proof.
Let © be the function that is undefined everywhere.

Case distinction:

Case 1: QeS8

Let g € R\ S be an arbitrary computable function
outside of S (exists because S C R and S # R).

Let @ be a Turing machine that computes q.

alting Problem Variants Rice's Theorem Summary

0000080000000

Rice's Theorem (4)

Proof (continued).

We show that Hy < C(S).
Consider function f : {0,1}* — {0,1}*,
where f(w) is defined as follows:
m Construct TM M that first behaves on input y like M,
on the empty tape (independently of what y is).

m Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of @
for input y and then simulates Q.

m f(w) is the encoding of this TM M

alting Problem Variants Rice's Theorem Summary

0000080000000

Rice's Theorem (4)

Proof (continued).

We show that Hy < C(S).
Consider function f : {0,1}* — {0,1}*,
where f(w) is defined as follows:
m Construct TM M that first behaves on input y like M,
on the empty tape (independently of what y is).
m Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of @
for input y and then simulates Q.
m f(w) is the encoding of this TM M

f is total and computable.

Rice's Theorem

O00000@000000

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

Rice's Theorem

O00000@000000

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

Q if M,, does not terminate on ¢
Mg (w) computes)
g otherwise

alting Problem Variants Rice's Theorem Summary

O00000@000000

Rice's Theorem (5)

Proof (continued).
Which function is computed by the TM encoded by f(w)?

Q if M,, does not terminate on ¢
Mg (w) computes)
g otherwise

For all words w € {0, 1}*:

w € Hy =— M,, terminates on &
= Mg (,) computes the function q
= the function computed by M¢(, is not in §
— f(w) ¢ C(S)

Rice's Theorem

0000000800000

Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

alting Problem Variants Rice's Theorem Summary
[e]e]e 000 0000000800000 [e]e)
- 1
Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

alting Problem Variants Rice's Theorem Summary
[e]e]e 000 0000000800000 [e]e)
- 1
Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).

alting Problem Variants Rice's Theorem Summary
[e]e]e 000 0000000800000 [e]e)
- 1
Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).

Since Hp is undecidable, Hp is also undecidable.

alting Problem Variants Rice's Theorem
ole} 0000000800000

Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).
Since Hp is undecidable, Hp is also undecidable.

We can conclude that C(S) is undecidable.

Summary

Other Halting Problem Variants Rice's Theorem
5 00000000e0000

Rice's Theorem (7)

Proof (continued).

Case2: Q¢S

Analogous to Case 1 but this time choose g € S.

The corresponding function f then reduces Hy to C(S).

Thus, it also follows in this case that C(S) is undecidable.

Summar

Ol

g Problem Variants Rice's Theorem

0000000008000

Rice's Theorem: Consequences

Was it worth it?
We can now conclude immediately that (for example)
the following informally specified problems are all undecidable:

m Does a given TM compute a constant function?

m Does a given TM compute a total function
(i.e. will it always terminate, and in particular terminate
in a “correct” configuration)?

Is the output of a given TM always longer than its input?
Does a given TM compute the identity function?
Does a given TM compute the computable function 77

Iting Problem Variants Rice's Theorem
5 0000000000800

Rice's Theorem: Examples

m Does a given TM compute a constant function?
S = {f | f is total and computable and
for all x,y in the domain of f : f(x) = f(y)}

m Does a given TM compute a total function?
S = {f | f is total and computable}

m Does a given TM compute the identity function?
S ={f | f(x) = x for all x}

m Does a given TM add two natural numbers?
S={f:N2 = Ng|f(x,y)=x+y}

m Does a given TM compute the computable function 7?
S ={f}
(full automization of software verification is impossible)

Summar

Halting Problem Variants Rice's Theorem Summar
00 0000000000080

Rice's Theorem: Pitfalls

m §S={f|f can be computed by a DTM
with an even number of states}
Rice's theorem not applicable because S =R
m S={f:{0,1}* =, {0,1} | f(w) =1 iff
M,, does not terminate on €}?
Rice's theorem not applicable because S € R

m Show that {w | M,, traverses all states on every input}
is undecidable.
Rice's theorem not directly applicable because not a semantic
property (the function computed by M,, can also be
computed by a TM that does not traverse all states)

Problem Variants Rice's Theorem Summary

Rice's Theorem: Practical Applications

Undecidable due to Rice's theorem + a small reduction:
m automated debugging:
m Can a given variable ever receive a null value?
m Can a given assertion in a program ever trigger?
m Can a given buffer ever overflow?
m virus scanners and other software security analysis:
m Can this code do something harmful?
m Is this program vulnerable to SQL injections?
m Can this program lead to a privilege escalation?
m optimizing compilers:
m Is this dead code?
m |s this a constant expression?
m Can pointer aliasing happen here?
m Is it safe to parallelize this code path?
m parallel program analysis:
m Is a deadlock possible here?
m Can a race condition happen here?

[Je]

Summary

g Problem Variants Summary

oe

Summary

undecidable but semi-decidable problems:

m special halting problem a.k.a. self-application problem
(from previous chapter)

m general halting problem

m halting problem on empty tape

Rice's theorem:

m "“In general one cannot determine algorithmically
what a given program (or Turing machine) computes.”

	Other Halting Problem Variants
	

	Rice's Theorem
	

	Summary

