

Theory of Computer Science

D3. Halting Problem and Reductions

Gabriele Röger

University of Basel

April 27, 2020

Introduction

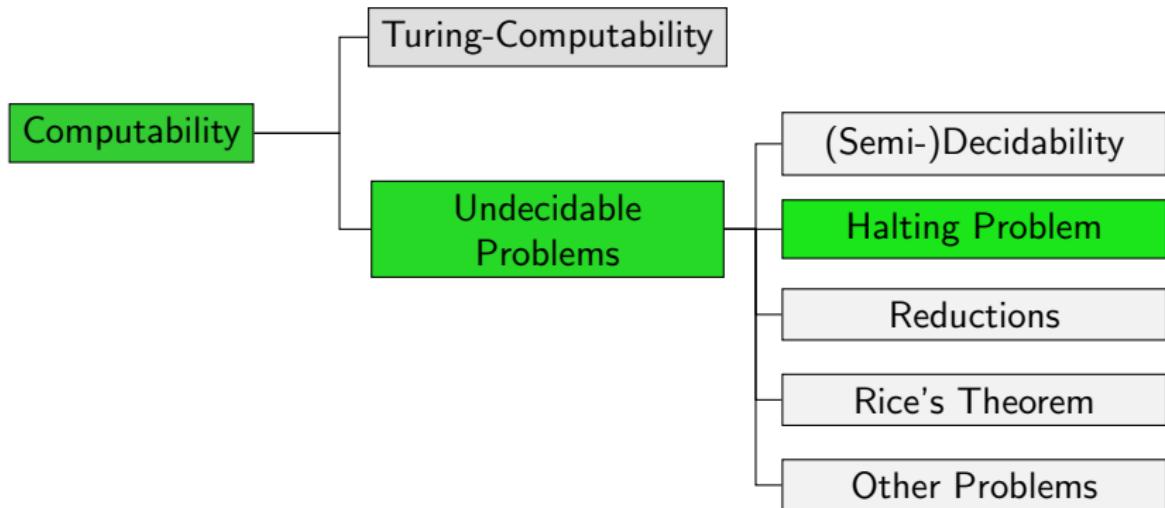
Undecidable Problems

- We now know many characterizations of semi-decidability and decidability.
- What's missing is a **concrete example** for an **undecidable** (= not decidable) problem.
- Do undecidable problems even exist?

Undecidable Problems

- We now know many characterizations of semi-decidability and decidability.
- What's missing is a **concrete example** for an **undecidable** (= not decidable) problem.
- Do undecidable problems even exist?
- Yes! **Counting argument**: there are (for a fixed Σ) as many **decision algorithms** (e.g., Turing machines) as numbers in \mathbb{N}_0 but as many **languages** as numbers in \mathbb{R} .
Since \mathbb{N}_0 cannot be surjectively mapped to \mathbb{R} , languages with no decision algorithm exist.
- But this argument does not give us a **concrete** undecidable problem. \rightsquigarrow main goal of this chapter

Overview: Computability Theory



Turing Machines as Words

Turing Machines as Inputs

- The first undecidable problems that we will get to know have Turing machines as their **input**.
~~ “programs that have programs as input”: cf. compilers, interpreters, virtual machines, etc.
- We have to think about how we can encode **arbitrary Turing machines** as **words over a fixed alphabet**.
- We use the binary alphabet $\Sigma = \{0, 1\}$.
- As an intermediate step we first encode over the alphabet $\Sigma' = \{0, 1, \#\}$.

Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over $\{0, 1, \#\}$

Reminder: Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \square, E \rangle$

Idea:

- input alphabet Σ should always be $\{0, 1\}$
- enumerate states in Q and symbols in Γ and consider them as numbers $0, 1, 2, \dots$
- blank symbol always receives number 2
- start state always receives number 0

Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over $\{0, 1, \#\}$

Reminder: Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \square, E \rangle$

Idea:

- input alphabet Σ should always be $\{0, 1\}$
- enumerate states in Q and symbols in Γ and consider them as numbers $0, 1, 2, \dots$
- blank symbol always receives number 2
- start state always receives number 0

Then it is sufficient to **only encode δ** explicitly:

- Q : all states mentioned in the encoding of δ
- E : all states that never occur on a left-hand side of a δ -rule
- $\Gamma = \{0, 1, \square, a_3, a_4, \dots, a_k\}$, where k is the largest symbol number mentioned in the δ -rules

Encoding a Turing Machine as a Word (2)

encode the rules:

- Let $\delta(q_i, a_j) = \langle q_{i'}, a_{j'}, D \rangle$ be a rule in δ , where the indices i, i', j, j' correspond to the enumeration of states/symbols and $D \in \{L, R, N\}$.
- encode this rule as

$$w_{i,j,i',j',D} = \# \# \text{bin}(i) \# \text{bin}(j) \# \text{bin}(i') \# \text{bin}(j') \# \text{bin}(m),$$

$$\text{where } m = \begin{cases} 0 & \text{if } D = L \\ 1 & \text{if } D = R \\ 2 & \text{if } D = N \end{cases}$$

- For every rule in δ , we obtain one such word.
- All of these words in sequence (in arbitrary order) encode the Turing machine.

Encoding a Turing Machine as a Word (3)

Step 2: transform into word over $\{0, 1\}$ with mapping

$$0 \mapsto 00$$

$$1 \mapsto 01$$

$$\# \mapsto 11$$

Turing machine can be reconstructed from its encoding.

How?

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

111101001101011100110100110100111101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

111101001101011100110100110100111101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

111101001101011100110100110100111101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Encoding a Turing Machine as a Word (4)

Example (step 1)

$\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10

$\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

11110100110101110011010011011101110111010111001100

Note: We can also consider the encoded word
(uniquely; [why?](#)) as a **number** that enumerates this TM.

This is not important for the halting problem but in other contexts where we operate on numbers instead of words.

Turing Machine Encoded by a Word

goal: function that maps any word in $\{0, 1\}^*$ to a Turing machine

problem: not all words in $\{0, 1\}^*$ are encodings of a Turing machine

solution: Let \hat{M} be an arbitrary fixed deterministic Turing machine (for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word)

For all $w \in \{0, 1\}^*$:

$$M_w = \begin{cases} M' & \text{if } w \text{ is the encoding of some DTM } M' \\ \hat{M} & \text{otherwise} \end{cases}$$

Special Halting Problem

Special Halting Problem

Our preparations are now done and we can define:

Definition (Special Halting Problem)

The **special halting problem** or **self-application problem** is the language

$$K = \{w \in \{0, 1\}^* \mid M_w \text{ started on } w \text{ terminates}\}.$$

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem

Note: word w plays two roles as encoding of the TM and as input for encoded machine

Semi-Decidability of the Special Halting Problem

Theorem (Semi-Decidability of the Special Halting Problem)

The special halting problem is semi-decidable.

Proof.

We construct an “interpreter” for DTMs
that receives the encoding of a DTM as input w
and simulates its computation on input w .

If the simulated DTM stops, the interpreter returns 1.
Otherwise it does not return.

This interpreter computes χ'_K .

Note: TMs simulating arbitrary TMs are called **universal** TMs.

German: universelle Turingmaschine

Undecidability of the Special Halting Problem (1)

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Undecidability of the Special Halting Problem (1)

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof.

Proof by contradiction: we assume that the special halting problem K were decidable and derive a contradiction.

Undecidability of the Special Halting Problem (1)

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof.

Proof by contradiction: we assume that the special halting problem K were decidable and derive a contradiction.

So assume K is decidable. Then χ_K is computable (why?).

Undecidability of the Special Halting Problem (1)

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof.

Proof by contradiction: we assume that the special halting problem K were decidable and derive a contradiction.

So assume K is decidable. Then χ_K is computable ([why?](#)).

Let M be a Turing machine that computes χ_K , i. e.,
given a word w writes 1 or 0 onto the tape
(depending on whether $w \in K$) and then stops.

...

Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M' as follows:

- ① Execute M on the input w .
- ② If the tape content is 0: stop.
- ③ Otherwise: enter an endless loop.

Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M' as follows:

- ① Execute M on the input w .
- ② If the tape content is 0: stop.
- ③ Otherwise: enter an endless loop.

Let w' be the encoding of M' . **How will M' behave on input w' ?**

Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M' as follows:

- ① Execute M on the input w .
- ② If the tape content is 0: stop.
- ③ Otherwise: enter an endless loop.

Let w' be the encoding of M' . **How will M' behave on input w' ?**

M' run on w' stops

iff M run on w' outputs 0

Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M' as follows:

- ① Execute M on the input w .
- ② If the tape content is 0: stop.
- ③ Otherwise: enter an endless loop.

Let w' be the encoding of M' . **How will M' behave on input w' ?**

M' run on w' stops

iff M run on w' outputs 0

iff $\chi_K(w') = 0$

Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M' as follows:

- ① Execute M on the input w .
- ② If the tape content is 0: stop.
- ③ Otherwise: enter an endless loop.

Let w' be the encoding of M' . **How will M' behave on input w' ?**

M' run on w' stops

iff M run on w' outputs 0

iff $\chi_K(w') = 0$

iff $w' \notin K$

Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M' as follows:

- ① Execute M on the input w .
- ② If the tape content is 0: stop.
- ③ Otherwise: enter an endless loop.

Let w' be the encoding of M' . **How will M' behave on input w' ?**

M' run on w' stops

iff M run on w' outputs 0

iff $\chi_K(w') = 0$

iff $w' \notin K$

iff $M_{w'}$ run on w' does not stop

Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M' as follows:

- ① Execute M on the input w .
- ② If the tape content is 0: stop.
- ③ Otherwise: enter an endless loop.

Let w' be the encoding of M' . **How will M' behave on input w' ?**

M' run on w' stops

iff M run on w' outputs 0

iff $\chi_K(w') = 0$

iff $w' \notin K$

iff $M_{w'}$ run on w' does not stop

iff M' run on w' does not stop

Contradiction! This proves the theorem. □

Reprise: Type-0 Languages

Back to Chapter C8: Closure Properties

	Intersection	Union	Complement	Concatenation	Star
Type 3	Yes	Yes	Yes	Yes	Yes
Type 2	No	Yes	No	Yes	Yes
Type 1	Yes ⁽²⁾	Yes ⁽¹⁾	Yes ⁽²⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Type 0	Yes ⁽²⁾	Yes ⁽¹⁾	No ⁽³⁾	Yes ⁽¹⁾	Yes ⁽¹⁾

Proofs?

(1) proof via grammars, similar to context-free cases

(2) without proof

(3) proof in later chapters (part D)

Back to Chapter C8: Decidability

	Word problem	Emptiness problem	Equivalence problem	Intersection problem
Type 3	Yes	Yes	Yes	Yes
Type 2	Yes	Yes	No	No
Type 1	Yes ⁽¹⁾	No ⁽³⁾	No ⁽²⁾	No ⁽²⁾
Type 0	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾

Proofs?

- (1) same argument we used for context-free languages
- (2) because already undecidable for context-free languages
- (3) without proof
- (4) proofs in later chapters (part D)

Answers to Old Questions

Closure properties:

- K is semi-decidable (and thus type 0) but not decidable.
- ~~ \bar{K} is **not** semi-decidable, thus **not** type 0.
- ~~ Type-0 languages are **not** closed under complement.

Decidability:

- K is type 0 but not decidable.
- ~~ **word problem** for type-0 languages not decidable
- ~~ emptiness, equivalence, intersection problem: [later in exercises](#)
(We are still missing some important results for this.)

Introduction
○○○

TMs as Words
○○○○○○○

Special Halting Problem
○○○○

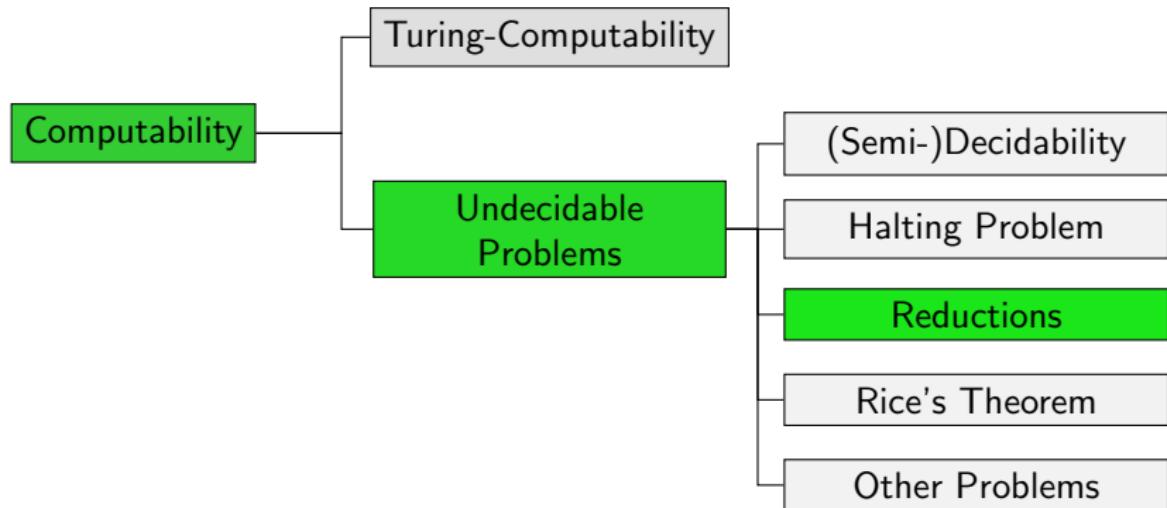
Type-0 Languages
○○○○

Reductions
●○○○○○○○

Summary
○○

Reductions

Overview: Computability Theory



What We Achieved So Far: Discussion

- We now know a concrete undecidable problem.
- But the problem is rather artificial:
how often do we want to apply a program to itself?
- We will see that we can derive **further** (more useful)
undecidability results from the undecidability
of the special halting problem.
- The central notion for this is **reducing**
a new problem to an already known problem.

Reductions: Definition

Definition (Reduction)

Let $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$ be languages, and let $f : \Sigma^* \rightarrow \Gamma^*$ be a total and computable function such that for all $x \in \Sigma^*$:

$$x \in A \quad \text{if and only if} \quad f(x) \in B.$$

Then we say that A can be **reduced to B** (in symbols: $A \leq B$), and f is called **reduction from A to B** .

German: A ist auf B reduzierbar, Reduktion von A auf B

Reduction Property

Theorem (Reductions vs. Semi-Decidability/Decidability)

Let A and B be languages with $A \leq B$. Then:

- ① If B is decidable, then A is decidable.
- ② If B is semi-decidable, then A is semi-decidable.
- ③ If A is not decidable, then B is not decidable.
- ④ If A is not semi-decidable, then B is not semi-decidable.

~~ In the following, we use 3. to show undecidability for further problems.

Reduction Property: Proof

Proof.

for 1.: The following algorithm computes $\chi_A(x)$ given input x :

```
y := f(x)
result :=  $\chi_B(y)$ 
RETURN result
```

Reduction Property: Proof

Proof.

for 1.: The following algorithm computes $\chi_A(x)$ given input x :

```
y := f(x)
result :=  $\chi_B(y)$ 
RETURN result
```

for 2.: identical to (1), but use χ'_B (instead of χ_B)
to compute χ'_A (instead of χ_A)

Reduction Property: Proof

Proof.

for 1.: The following algorithm computes $\chi_A(x)$ given input x :

```
y := f(x)
result :=  $\chi_B(y)$ 
RETURN result
```

for 2.: identical to (1), but use χ'_B (instead of χ_B)
to compute χ'_A (instead of χ_A)

for 3./4.: contrapositives of 1./2. \rightsquigarrow logically equivalent

Reductions are Preorders

Theorem (Reductions are Preorders)

The relation “ \leq ” is a preorder:

① *For all languages A:*

$A \leq A$ (*reflexivity*)

② *For all languages A, B, C:*

*If $A \leq B$ and $B \leq C$, then $A \leq C$ (*transitivity*)*

German: schwache Halbordnung/Quasiordnung, Reflexivitat, Transitivitat

Reductions are Preorders: Proof

Proof.

for 1.: The function $f(x) = x$ is a reduction from A to A because it is total and computable and $x \in A$ iff $f(x) \in A$.

for 2.: \rightsquigarrow exercises

Summary

Summary

- The **special halting problem** (self-application problem) is undecidable.
- However, it is semi-decidable.
- important concept in this chapter:
Turing machines represented as **words**
~~ Turing machines taking Turing machines as their input
- **reductions**: “embedding” a problem as a special case of another problem
- important method for proving undecidability:
reduce from a known undecidable problem to a new problem