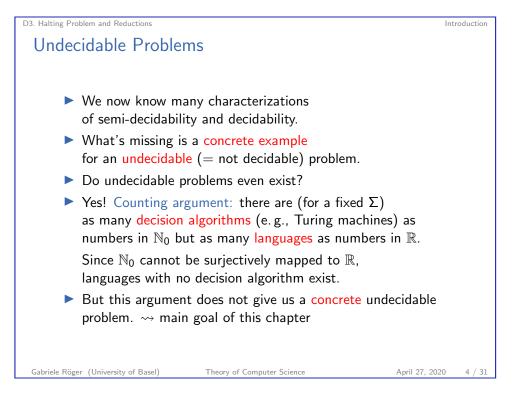


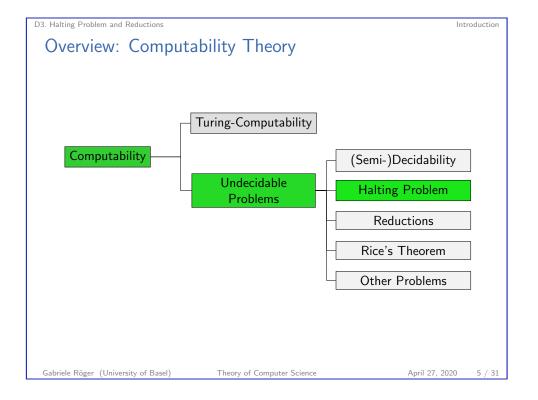
D3. Halting Problem and Reductions Introduction

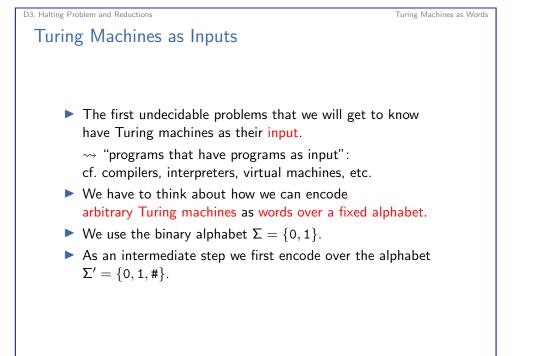
Theory of Computer Science

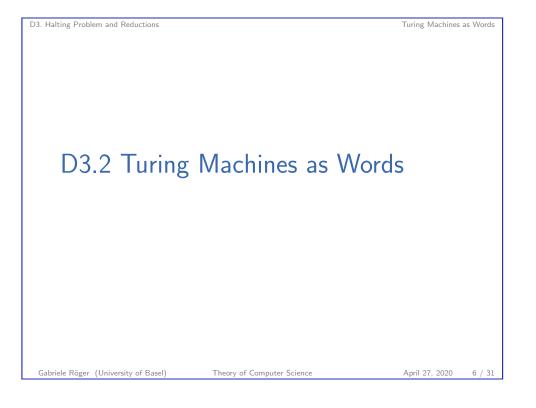
Theory of Computer April 27, 2020 — D3. Halting			
D3.1 Introduction	1		
D3.2 Turing Mac	hines as Words		
D3.3 Special Halt	ing Problem		
D3.4 Reprise: Typ	pe-0 Languages		
D3.5 Reductions			
D3.6 Summary			
Gabriele Röger (University of Basel)	Theory of Computer Science	April 27,	2020 2 / 31



3 / 31







D3. Halting Problem and Reductions

Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over $\{0, 1, \#\}$ Reminder: Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \Box, E \rangle$ Idea:

- ▶ input alphabet Σ should always be $\{0, 1\}$
- enumerate states in Q and symbols in Γ and consider them as numbers 0, 1, 2, ...
- blank symbol always receives number 2
- start state always receives number 0

Then it is sufficient to only encode δ explicitly:

- Q: all states mentioned in the encoding of δ
- E: all states that never occur on a left-hand side of a δ -rule
- ► $\Gamma = \{0, 1, \Box, a_3, a_4, \dots, a_k\}$, where k is the largest symbol number mentioned in the δ -rules

Turing Machines as Words

9 / 31

Encoding a Turing Machine as a Word (2)

encode the rules:

- Let $\delta(q_i, a_i) = \langle q_{i'}, a_{i'}, D \rangle$ be a rule in δ , where the indices i, i', j, j' correspond to the enumeration of states/symbols and $D \in \{L, R, N\}$.
- encode this rule as
- $w_{i,i,i',j',D} = \#\#bin(i)\#bin(j)\#bin(i')\#bin(j')\#bin(m),$ where $m = \begin{cases} 0 & \text{if } D = L \\ 1 & \text{if } D = R \\ 2 & \text{if } D = N \end{cases}$

Theory of Computer Science

- For every rule in δ , we obtain one such word.
- All of these words in sequence (in arbitrary order) encode the Turing machine.

Gabriele Röger (University of Basel)

April 27, 2020

D3. Halting Problem and Reductions

Turing Machines as Words

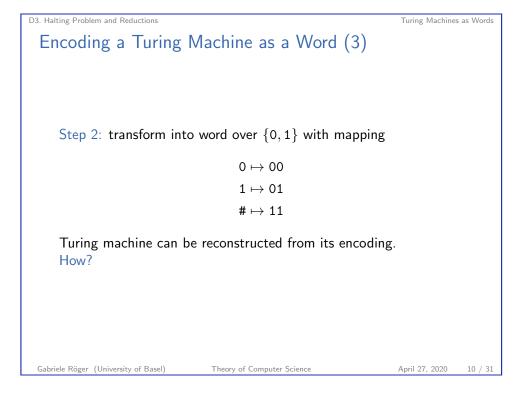
```
Encoding a Turing Machine as a Word (4)
```

Example (step 1) $\delta(q_2, a_3) = \langle q_0, a_2, N \rangle$ becomes ##10#11#0#10#10 $\delta(q_1, a_1) = \langle q_3, a_0, L \rangle$ becomes ##1#1#1#0#0

Example (step 2) ##10#11#0#10#10##1#1#11#0#0

Note: We can also consider the encoded word (uniquely; why?) as a number that enumerates this TM.

This is not important for the halting problem but in other contexts where we operate on numbers instead of words.



Turing Machine Encoded by a Word

function that maps any word in $\{0, 1\}^*$ to a Turing machine goal: problem: not all words in $\{0, 1\}^*$ are encodings of a Turing machine

solution: Let \widehat{M} be an arbitrary fixed deterministic Turing machine (for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word) For all $w \in \{0, 1\}^*$:

D3. Halting Problem and Reductions

 $M_{w} = \begin{cases} M' & \text{if } w \text{ is the encoding of some DTM } M' \\ \widehat{M} & \text{otherwise} \end{cases}$

Turing Machines as Words

D3.3 Special Halting Problem

Gabriele Röger (University of Basel)

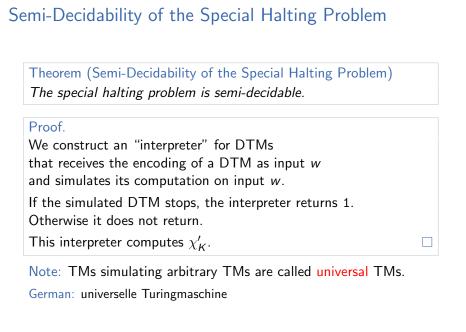
Theory of Computer Science

D3. Halting Problem and Reductions

Special Halting Problem

13 / 31

April 27, 2020



D3. Halting Problem and Reductions

Special Halting Problem

Our preparations are now done and we can define:

Definition (Special Halting Problem) The special halting problem or self-application problem is the language

 $K = \{w \in \{0,1\}^* \mid M_w \text{ started on } w \text{ terminates}\}.$

Theory of Computer Science

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem

Note: word *w* plays two roles as encoding of the TM and as input for encoded machine

Gabriele Röger (University of Basel)

April 27, 2020

D3. Halting Problem and Reductions

Special Halting Problem

14 / 31

Special Halting Problem

Undecidability of the Special Halting Problem (1)

Theorem (Undecidability of the Special Halting Problem) The special halting problem is undecidable.

Proof.

Proof by contradiction: we assume that the special halting problem K were decidable and derive a contradiction.

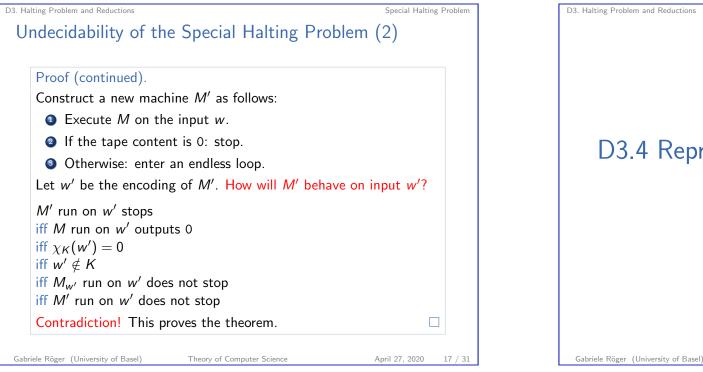
So assume K is decidable. Then χ_K is computable (why?).

Let *M* be a Turing machine that computes χ_K , i.e.,

given a word w writes 1 or 0 onto the tape

(depending on whether $w \in K$) and then stops.

. . .



D3. Halting Problem and Reductions

Reprise: Type-0 Languages

Back to Chapter C8: Closure Properties

	Intersection	Union	Complement	Concatenation	Star
Type 3	Yes	Yes	Yes	Yes	Yes
Type 2	No	Yes	No	Yes	Yes
Type 1	Yes ⁽²⁾	Yes ⁽¹⁾	Yes ⁽²⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Type 0	Yes ⁽²⁾	$Yes^{(1)}$	No ⁽³⁾	Yes ⁽¹⁾	Yes ⁽¹⁾

Proofs? (1) proof via grammars, similar to context-free cases (2) without proof (3) proof in later chapters (part D)

Gabriele Röger (University of Basel)



D3. Halting Problem and Reductions

Back to Chapter C8: Decidability

	Word problem	Emptiness problem	Equivalence problem	Intersection problem
Туре 3	Yes	Yes	Yes	Yes
Type 2	Yes	Yes	No	No
Type 1	Yes ⁽¹⁾	No ⁽³⁾	No ⁽²⁾	No ⁽²⁾
Type 0	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾

Theory of Computer Science

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages

(3) without proof

(4) proofs in later chapters (part D)

April 27, 2020

Reprise: Type-0 Languages

18 / 31

Reprise: Type-0 Languages

D3. Halting Problem and Reductions

Answers to Old Questions

Closure properties:

- ► K is semi-decidable (and thus type 0) but not decidable.
- $\rightsquigarrow \bar{K}$ is not semi-decidable, thus not type 0.
- $\rightsquigarrow\,$ Type-0 languages are not closed under complement.

Decidability:

- ► *K* is type 0 but not decidable.
- \rightsquigarrow word problem for type-0 languages not decidable
- → emptiness, equivalence, intersection problem: later in exercises (We are still missing some important results for this.)

Gabriele Röger (University of Basel)

Gabriele Röger (University of Basel)

Theory of Computer Science

April 27, 2020

April 27, 2020

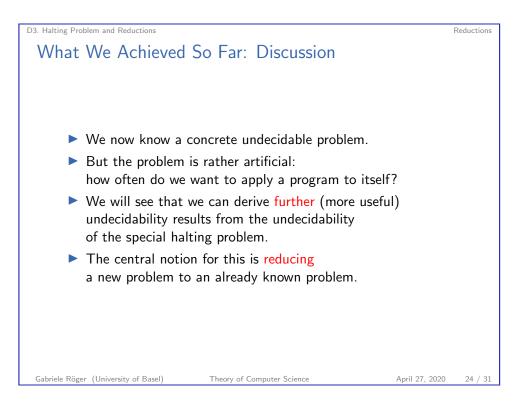
23 / 31

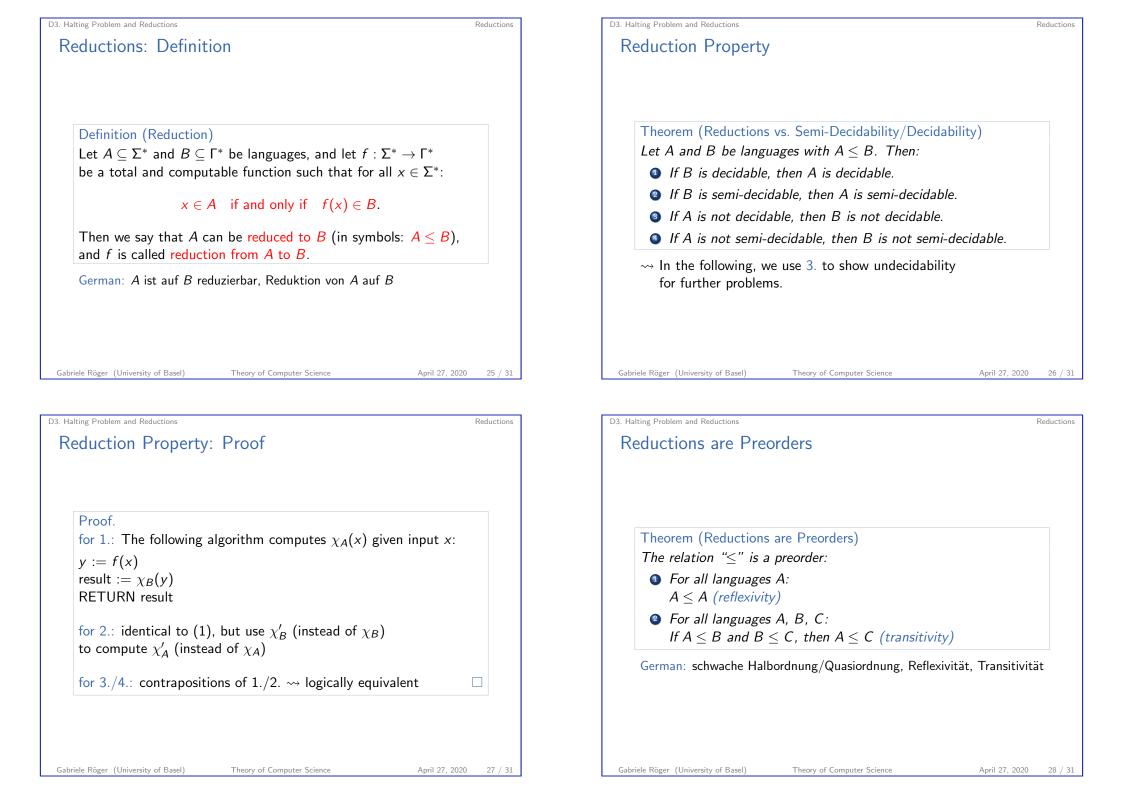
21 / 31

D3. Halting Problem and Reductions Overview: Computability Theory Computability Undecidable Problems Reductions Rice's Theorem Other Problems

Theory of Computer Science

Reductions





Reductions are Preorders: Proof

Ρ	ro	0	f.

for 1.: The function f(x) = x is a reduction from A to A because it is total and computable and $x \in A$ iff $f(x) \in A$.

	Ľ
--	---

Gabriele Röger	(University of Basel)	Theory of Computer Science	April 27, 2020	29 / 31

D3. Halting Problem and Reductions

Summary

- The special halting problem (self-application problem) is undecidable.
- ► However, it is semi-decidable.
- important concept in this chapter: Turing machines represented as words
 - → Turing machines taking Turing machines as their input
- reductions: "embedding" a problem as a special case of another problem
- important method for proving undecidability: reduce from a known undecidable problem to a new problem

D3. Halting Problem and Reductions			Summary
D3.6 Summ	arv		
DS.0 Summ	ary		
Gabriele Röger (University of Basel)	Theory of Computer Science	April 27, 2020	30 / 31
Gabriele Roger (University of Basel)	Theory of Computer Science	April 27, 2020	30 / 31

Reductions

Summarv