Theory of Computer Science
D3. Halting Problem and Reductions

Gabriele Roger

University of Basel

April 27, 2020

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020

1/31

Theory of Computer Science
April 27, 2020 — D3. Halting Problem and Reductions

D3.1 Introduction

D3.2 Turing Machines as Words
D3.3 Special Halting Problem
D3.4 Reprise: Type-0 Languages
D3.5 Reductions

D3.6 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 2 /31

D3. Halting Problem and Reductions Introduction

D3.1 Introduction

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 3 /31

D3. Halting Problem and Reductions Introduction

Undecidable Problems

> We now know many characterizations
of semi-decidability and decidability.

» What's missing is a concrete example
for an undecidable (= not decidable) problem.

» Do undecidable problems even exist?

» Yes! Counting argument: there are (for a fixed ¥)
as many decision algorithms (e. g., Turing machines) as
numbers in Ng but as many languages as numbers in R.

Since Ny cannot be surjectively mapped to R,
languages with no decision algorithm exist.

> But this argument does not give us a concrete undecidable
problem. ~» main goal of this chapter

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 4 /31

D3. Halting Problem and Reductions Introduction

Overview: Computability Theory

Turing-Computability |

| (Semi-)Decidability |

—| Reductions |

—| Rice's Theorem |

—| Other Problems |

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 5 /31

D3. Halting Problem and Reductions Turing Machines as Words

D3.2 Turing Machines as Words

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 6 /31

D3. Halting Problem and Reductions Turing Machines as Words

Turing Machines as Inputs

» The first undecidable problems that we will get to know
have Turing machines as their input.

~> “programs that have programs as input”:
cf. compilers, interpreters, virtual machines, etc.

> We have to think about how we can encode
arbitrary Turing machines as words over a fixed alphabet.

» We use the binary alphabet ¥ = {0,1}.

» As an intermediate step we first encode over the alphabet
Y ={0,1,#}.

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 7 /31

D3. Halting Problem and Reductions Turing Machines as Words

Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over {0, 1, #}
Reminder: Turing machine M = (Q, %, T, 0, qo, 1, E)
Idea:

» input alphabet ¥ should always be {0, 1}

> enumerate states in @ and symbols in I
and consider them as numbers 0,1,2, ...

» blank symbol always receives number 2

> start state always receives number 0

Then it is sufficient to only encode § explicitly:
> @Q: all states mentioned in the encoding of §
» E: all states that never occur on a left-hand side of a J-rule

» ={0,1,00,a3,aa,...,ak}, where k is the largest symbol
number mentioned in the d-rules

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020

8

31

D3. Halting Problem and Reductions Turing Machines as Words

Encoding a Turing Machine as a Word (2)

encode the rules:
> Let 5(q,-./ aj) = <q,'/, aj, D> be a rule in §,
where the indices i, i/, j, j/ correspond to the enumeration of
states/symbols and D € {L,R,N}.

» encode this rule as

wijir j.p = ##bin(i)#bin(j)#bin(i")#bin(j")#bin(m),

0 fD=L
where m=<1 ifD=R
2 ifD=N

» For every rule in §, we obtain one such word.

» All of these words in sequence (in arbitrary order)
encode the Turing machine.

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020

9/

31

D3. Halting Problem and Reductions

Encoding a Turing Machine as a Word (3)

Step 2: transform into word over {0, 1} with mapping

0+ 00
1~ 01
#— 11

Turing machine can be reconstructed from its encoding.

How?

Gabriele Roger (University of Basel) Theory of Computer Science

Turing Machines as Words

April 27, 2020

10 / 31

D3. Halting Problem and Reductions Turing Machines as Words

Encoding a Turing Machine as a Word (4)

Example (step 1)
3(qg2, a3) = (qo, a2, N) becomes ##10#11#0#10#10
0(q1,a1) = (g3, a0, L) becomes ##1#1#11#0#0

Example (step 2)
##10#11#0#10#10##1#1#11#04#0
111101001101011100110100110100111101110111010111001100

Note: We can also consider the encoded word
(uniquely; why?) as a number that enumerates this TM.

This is not important for the halting problem but in other contexts
where we operate on numbers instead of words.

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 11 /31

D3. Halting Problem and Reductions

Turing Machine Encoded by a Word

Turing Machines as Words

goal: function that maps any word in {0,1}* to a Turing machine
problem: not all words in {0, 1}* are encodings of a Turing machine

solution: Let M be an arbitrary fixed deterministic Turing machine
(for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word)
For all w € {0, 1}*:

Mo — M’" if w is the encoding of some DTM M’
" IM otherwise

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 12 /31

D3. Halting Problem and Reductions Special Halting Problem

D3.3 Special Halting Problem

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 13 /31

D3. Halting Problem and Reductions Special Halting Problem

Special Halting Problem

Our preparations are now done and we can define:

Definition (Special Halting Problem)

The special halting problem or self-application problem
is the language

K ={w € {0,1}" | M,, started on w terminates}.

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem

Note: word w plays two roles as encoding of the TM
and as input for encoded machine

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 14 / 31

D3. Halting Problem and Reductions Special Halting Problem

Semi-Decidability of the Special Halting Problem

Theorem (Semi-Decidability of the Special Halting Problem)
The special halting problem is semi-decidable.

Proof.

We construct an “interpreter” for DTMs

that receives the encoding of a DTM as input w
and simulates its computation on input w.

If the simulated DTM stops, the interpreter returns 1.
Otherwise it does not return.

O

. ,
This interpreter computes /.

Note: TMs simulating arbitrary TMs are called universal TMs.

German: universelle Turingmaschine

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 15 / 31

D3. Halting Problem and Reductions Special Halting Problem

Undecidability of the Special Halting Problem (1)

Theorem (Undecidability of the Special Halting Problem)
The special halting problem is undecidable.

Proof.
Proof by contradiction: we assume that the special halting problem
K were decidable and derive a contradiction.

So assume K is decidable. Then yk is computable (why?).

Let M be a Turing machine that computes xk, i.e.,
given a word w writes 1 or O onto the tape
(depending on whether w € K) and then stops.

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 16 / 31

D3. Halting Problem and Reductions Special Halting Problem

Undecidability of the Special Halting Problem (2)

Proof (continued).
Construct a new machine M’ as follows:
© Execute M on the input w.
@ If the tape content is O: stop.
© Otherwise: enter an endless loop.
Let w’ be the encoding of M’. How will M behave on input w'?
M’ run on w’ stops
iff M run on w’ outputs 0
iff xk(w') =0
iff w' ¢ K
iff M,,» run on w' does not stop
iff M’ run on w' does not stop

Contradiction! This proves the theorem. [

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 17 / 31

D3. Halting Problem and Reductions Reprise: Type-0 Languages

D3.4 Reprise: Type-0 Languages

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 18 / 31

D3. Halting Problem and Reductions Reprise: Type-0 Languages

Back to Chapter C8: Closure Properties

Intersection Union Complement Concatenation Star

Type 2 No Yes No Yes Yes
Type 0 Yes®® Yes(1) No®) Yes(1) Yes(1)
Proofs?

(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part D)

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 19 / 31

D3. Halting Problem and Reductions Reprise: Type-0 Languages

Back to Chapter C8: Decidability

Word Emptiness Equivalence Intersection
problem problem problem problem
Type 2 Yes Yes No No
Type 0 No(#) No(4) No(#) No(4)

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages
(3) without proof

(4) proofs in later chapters (part D)

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 20 /31

D3. Halting Problem and Reductions Reprise: Type-0 Languages

Answers to Old Questions

Closure properties:
» K is semi-decidable (and thus type 0) but not decidable.
~ K is not semi-decidable, thus not type 0.

~+ Type-0 languages are not closed under complement.

Decidability:
> K is type 0 but not decidable.
~ word problem for type-0 languages not decidable

~ emptiness, equivalence, intersection problem: later in exercises
(We are still missing some important results for this.)

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 21

/ 31

D3. Halting Problem and Reductions Reductions

D3.5 Reductions

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 22 /31

D3. Halting Problem and Reductions Reductions

Overview: Computability Theory

Turing-Computability |

| (Semi-)Decidability |

—I Halting Problem |

—| Rice's Theorem |

—| Other Problems |

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 23 /31

D3. Halting Problem and Reductions

What We Achieved So Far: Discussion

» We now know a concrete undecidable problem.

» But the problem is rather artificial:
how often do we want to apply a program to itself?
» We will see that we can derive further (more useful)
undecidability results from the undecidability
of the special halting problem.
» The central notion for this is reducing
a new problem to an already known problem.

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020

Reductions

24

D3. Halting Problem and Reductions Reductions

Reductions: Definition

Definition (Reduction)
Let AC Y* and B C I'* be languages, and let f : £* — T*
be a total and computable function such that for all x € ¥*:

x€ A ifandonlyif f(x)e B.

Then we say that A can be reduced to B (in symbols: A < B),
and f is called reduction from A to B.

German: A ist auf B reduzierbar, Reduktion von A auf B

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 25 /31

D3. Halting Problem and Reductions Reductions

Reduction Property

Theorem (Reductions vs. Semi-Decidability/Decidability)
Let A and B be languages with A < B. Then:

@ If B is decidable, then A is decidable.

@ If B is semi-decidable, then A is semi-decidable.

@ If A is not decidable, then B is not decidable.

@ If A is not semi-decidable, then B is not semi-decidable.

~> In the following, we use 3. to show undecidability
for further problems.

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 26 / 31

D3. Halting Problem and Reductions Reductions

Reduction Property: Proof

Proof.
for 1.: The following algorithm computes xa(x) given input x:
y = f(x)

result := xg(y)
RETURN result

for 2.: identical to (1), but use x5 (instead of xg)
to compute x4 (instead of xa)

for 3./4.: contrapositions of 1./2. ~~ logically equivalent L]

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 27 / 31

D3. Halting Problem and Reductions Reductions

Reductions are Preorders

Theorem (Reductions are Preorders)
The relation “<" is a preorder:

© For all languages A:
A < A (reflexivity)

@ For all languages A, B, C:
If A< B and B < C, then A < C (transitivity)

German: schwache Halbordnung/Quasiordnung, Reflexivitat, Transitivitdt

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 28 /31

D3. Halting Problem and Reductions Reductions

Reductions are Preorders: Proof

Proof.
for 1.: The function f(x) = x is a reduction from A to A

because it is total and computable and x € A iff f(x) € A.

for 2.: ~~ exercises

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 29 /31

D3. Halting Problem and Reductions Summary

D3.6 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 30 /31

D3. Halting Problem and Reductions Summary

Summary

» The special halting problem (self-application problem)
is undecidable.

» However, it is semi-decidable.

P> important concept in this chapter:
Turing machines represented as words
~> Turing machines taking Turing machines as their input

P reductions: “embedding” a problem as a special case
of another problem

» important method for proving undecidability:
reduce from a known undecidable problem to a new problem

Gabriele Roger (University of Basel) Theory of Computer Science April 27, 2020 31 /31

	Introduction
	

	Turing Machines as Words
	

	Special Halting Problem
	

	Reprise: Type-0 Languages
	

	Reductions
	

	Summary
	

