
Theory of Computer Science
D2. Recursive Enumerability and Decidability

Gabriele Röger

University of Basel

April 22, 2020

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Overview: Computability Theory

Computability

Turing-Computability

Undecidable
Problems

(Semi-)Decidability

Halting Problem

Reductions

Rice’s Theorem

Other Problems

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Overview: Computability Theory

Computability

Turing-Computability

Undecidable
Problems

(Semi-)Decidability

Halting Problem

Reductions

Rice’s Theorem

Other Problems

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Introduction

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Computable Functions

For a higher level of abstraction, we consider the Church-Turing
thesis to be correct (we will further back this up in part F).

Instead of saying Turing-computable, we just say computable.

Instead of presenting TMs we use pseudo-code.

Instead of only considering computable functions
over words (Σ∗ →p Σ∗) or numbers (Nk

0 →p N0),
we permit arbitrary domains and codomains
(e.g., Σ∗ →p {0, 1}, N0 → Σ∗), ignoring details of encoding.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Computability vs. Decidability

last chapter: computability of functions

now: analogous concept for languages

Why languages?

Only yes/no questions (“Is w ∈ L?”)
instead of general function computation (“What is f (w)?”)
makes it easier to investigate questions.

Results are directly transferable to the more general problem
of computing arbitrary functions. (“playing 20 questions”)

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

How do we proceed?

We first get to know computable functions for encoding pairs
of numbers as numbers (later used for dovetailing).

Then we consider two new concepts

recursive enumerability and
semi-decidability

and relate them to each other and earlier concepts.

Afterwards, we require termination of algorithms
 decidability

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Encoding/Decoding Functions

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Encoding and Decoding: Binary Encode

Consider the function encode : N2
0 → N0 with:

encode(x , y) :=

(
x + y + 1

2

)
+ x

encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

encode is computable

encode is bijective

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 2 5 9 14
y = 1 1 4 8 13 19
y = 2 3 7 12 18 25
y = 3 6 11 17 24 32
y = 4 10 16 23 31 40

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Encoding and Decoding: Binary Decode

Consider the inverse functions
decode1 : N0 → N0 and decode2 : N0 → N0 of encode:

decode1(encode(x , y)) = x

decode2(encode(x , y)) = y

decode1 and decode2 are computable

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language L ⊆ Σ∗ is called recursively enumerable
if L = ∅ or if there is a total and computable function
f : N0 → Σ∗ such that

L = {f (0), f (1), f (2) . . . }.

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzählbar, f zählt L (rekursiv) auf

 do not confuse with “abzählbar” (countable)

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Examples (1)

Σ = {a, b}, f (x) = ax

enumerates {ε, a, aa, . . . }.

Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise

enumerates Mersenne primes.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Examples (1)

Σ = {a, b}, f (x) = ax

enumerates {ε, a, aa, . . . }.

Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise

enumerates Mersenne primes.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Examples (1)

Σ = {a, b}, f (x) = ax enumerates {ε, a, aa, . . . }.

Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise

enumerates Mersenne primes.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Examples (1)

Σ = {a, b}, f (x) = ax enumerates {ε, a, aa, . . . }.

Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise

enumerates Mersenne primes.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Examples (1)

Σ = {a, b}, f (x) = ax enumerates {ε, a, aa, . . . }.

Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise

enumerates Mersenne primes.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Examples (1)

Σ = {a, b}, f (x) = ax enumerates {ε, a, aa, . . . }.

Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise

enumerates Mersenne primes.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Examples (1)

Σ = {a, b}, f (x) = ax enumerates {ε, a, aa, . . . }.

Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise
enumerates Mersenne primes.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability: Examples (2)

For every alphabet Σ, the language Σ∗ can be recursively
enumerated with a function fΣ∗ : N0 → Σ∗. (How?)

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Semi-Decidability

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Semi-Decidability

Definition (Semi-Decidable)

A language L ⊆ Σ∗ is called semi-decidable if the following
function χ′L : Σ∗ →p {0, 1} is computable.

Here, for all w ∈ Σ∗:

χ′L(w) =

{
1 if w ∈ L

undefined if w 6∈ L

German: semi-entscheidbar

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Type-0 Languages vs. Semi-Decidability

Consider a DTM M that accepts a language L.

On input w

M stops after a finite number of steps in an end state if w ∈ L.
For w 6∈ L, the computation does not terminate.

We can easily create a DTM M ′ from M that computes χ′L.
(How?)

Vice versa, given a DTM that computes χ′L for some language
L, we can derive a DTM that accepts L.

Theorem (Semi-Decidable = Type 0)

A language L is of type 0 iff L is semi-decidable.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Type-0 Languages vs. Semi-Decidability

Consider a DTM M that accepts a language L.

On input w

M stops after a finite number of steps in an end state if w ∈ L.
For w 6∈ L, the computation does not terminate.

We can easily create a DTM M ′ from M that computes χ′L.
(How?)

Vice versa, given a DTM that computes χ′L for some language
L, we can derive a DTM that accepts L.

Theorem (Semi-Decidable = Type 0)

A language L is of type 0 iff L is semi-decidable.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Type-0 Languages vs. Semi-Decidability

Consider a DTM M that accepts a language L.

On input w

M stops after a finite number of steps in an end state if w ∈ L.
For w 6∈ L, the computation does not terminate.

We can easily create a DTM M ′ from M that computes χ′L.
(How?)

Vice versa, given a DTM that computes χ′L for some language
L, we can derive a DTM that accepts L.

Theorem (Semi-Decidable = Type 0)

A language L is of type 0 iff L is semi-decidable.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.

Special case L = ∅ is not a problem. (Why?)

Thus, let L 6= ∅ be a language over the alphabet Σ.

(⇒): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w :
FOR n := 0, 1, 2, 3, . . . DO

IF f (n) = w THEN
RETURN 1

END
DONE . . .

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.

Special case L = ∅ is not a problem. (Why?)

Thus, let L 6= ∅ be a language over the alphabet Σ.

(⇒): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w :
FOR n := 0, 1, 2, 3, . . . DO

IF f (n) = w THEN
RETURN 1

END
DONE . . .

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

(⇐): L is semi-decidable with semi-decision procedure M.
Choose w̃ ∈ L arbitrarily. (We have L 6= ∅.)

Define:

f (n) =

fΣ∗(x)
if n is the encoding of pair 〈x , y〉
and M executed on fΣ∗(x) stops in y steps

w̃ otherwise

f is total and computable and has codomain L.
Therefore f enumerates L.

f uses idea of dovetailing: interleaving unboundedly many
computations by starting new computations dynamically forever

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Characterizations of Semi-Decidability

Theorem

Let L be a language. The following statements are equivalent:

1 L is semi-decidable.

2 L is recursively enumerable.

3 L is of type 0.

4 L = L(M) for some Turing machine M

5 χ′L is (Turing-) computable.

6 L is the domain of a computable function.

7 L is the codomain of a computable function.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Characterizations of Semi-Decidability: Proof (1)

Proof.

(1) ⇔ (5): definition of semi-decidability

(1) ⇔ (2): earlier theorem in this chapter

(4) ⇔ (5): earlier theorem in this chapter

(3) ⇔ (4): from Chapter C8

(5) ⇒ (6): χ′L is computable with domain L

(6) ⇒ (5): to compute χ′L, compute a function with domain L,
then return 1

(2) ⇒ (7): use a function enumerating L (special case L = ∅) . . .

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(7) ⇒ (2): If L = ∅, obvious.

Otherwise, choose w̃ ∈ L arbitrarily, and let M be an algorithm
computing g : Σ∗ →p Σ∗ with codomain L.

To compute a function f enumerating L,
use the same dovetailing idea as in our earlier proof:

f (n) =

g(fΣ∗(x))
if n is the encoding of pair 〈x , y〉
and M executed on fΣ∗(x) stops in y steps

w̃ otherwise

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Decidability

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Semi-Decidability

Definition (Semi-Decidable)

A language L ⊆ Σ∗ is called semi-decidable if χ′L : Σ∗ →p {0, 1} is
computable.

Here, for all w ∈ Σ∗:

χ′L(w) =

{
1 if w ∈ L

undefined if w 6∈ L

For w 6∈ L, the computation does not (have to) terminate.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Decidability

Definition (Decidable)

A language L ⊆ Σ∗ is called decidable if χL : Σ∗ → {0, 1},
the characteristic function of L, is computable.

Here, for all w ∈ Σ∗:

χL(w) :=

{
1 if w ∈ L

0 if w /∈ L

German: entscheidbar, charakteristische Funktion

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case

decidability:

w
Yes

No

semi-decidability:

w
Yes

???

Example: Diophantine equations

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case

decidability:

w
Yes

No

semi-decidability:

w
Yes

???

Example: Diophantine equations

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case 1: w ∈ L

decidability:

w
Yes

No

semi-decidability:

w
Yes

???

Example: Diophantine equations

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case 2: w /∈ L

decidability:

w
Yes

No

semi-decidability:

w
Yes

???

Example: Diophantine equations

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case

decidability:

w
Yes

No

semi-decidability:

w
Yes

???

Example: Diophantine equations

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Connection Decidability/Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)

A language L is decidable iff both L and L̄ are semi-decidable.

Proof.

(⇒): obvious (Why?) . . .

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Connection Decidability/Semi-Decidability (2)

Proof (continued).

(⇐): Let ML be a semi-deciding algorithm for L,
and let ML̄ be a semi-deciding algorithm for L̄.

The following algorithm then is a decision procedure for L,
i.e., computes χL(w) for a given input word w :

FOR s := 1, 2, 3, . . . DO
IF ML stops on w in s steps with output 1 THEN

RETURN 1
END
IF ML̄ stops on w in s steps with output 1 THEN

RETURN 0
END

DONE

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Example: Decidable 6= Known Algorithm

Computability of χL does not mean we know how to compute it:

L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.
L is decidable.

There are either 7-sequences of arbitrary length in π (case 1)
or there is a maximal number n0 of consecutive 7s (case 2).

Case 1: χL(n) = 1 for all n
Case 2: χL(n) = 1 if n ≤ n0, otherwise it is 0

In both cases, the functions are computable.

We just do not know what is the correct function.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Summary

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

Summary

decidability of problems (= languages)
corresponds to computability of “yes/no” functions

semi-decidability:

recognizing “yes” instances in finite time
no answer for “no” instances

decidability of L = semi-decidability of L and L̄

semi-decidability = recursive enumerability

relationship to type-0 languages

	Introduction
	

	Encoding/Decoding Functions
	

	Recursive Enumerability
	

	Semi-Decidability
	

	Decidability
	

	Summary

