Theory of Computer Science
D2. Recursive Enumerability and Decidability

Gabriele Roger
University of Basel

April 22, 2020

Overview: Computability Theory

Turing-Computability ‘

(Semi-)Decidability ‘

Undecidable

Hal Probl
Problems alting Problem ‘

Rice's Theorem |

_{
H
= Reductions |
u
u

Other Problems |

Overview: Computability Theory

Turing-Computability |

Halting Problem |

Reductions |

Rice's Theorem |

Other Problems |

Introduction

Introduction E ng/Decoding Functions e Enumerability

0e00

Computable Functions

For a higher level of abstraction, we consider the Church-Turing
thesis to be correct (we will further back this up in part F).

m Instead of saying Turing-computable, we just say computable.
m Instead of presenting TMs we use pseudo-code.

m Instead of only considering computable functions
over words (* —, £*) or numbers (N& —, Np),
we permit arbitrary domains and codomains
(e.g., X* —p {0,1}, Ng — X*), ignoring details of encoding.

Introduction E ng/Decoding Functions

sive Enumerability
[e]e] o]

Computability vs. Decidability

m last chapter: computability of functions

m now: analogous concept for languages

Why languages?

m Only yes/no questions (“Is w € L?")
instead of general function computation (“What is f(w)?")
makes it easier to investigate questions.

m Results are directly transferable to the more general problem
of computing arbitrary functions. (~ “playing 20 questions”)

Introduction Encoding/Decoding Functions R ive Enumerability

[eJe]e]]

How do we proceed?

m We first get to know computable functions for encoding pairs
of numbers as numbers (later used for dovetailing).

m Then we consider two new concepts
m recursive enumerability and
m semi-decidability
and relate them to each other and earlier concepts.

m Afterwards, we require termination of algorithms
~ decidability

Encoding/Decoding Functions

@00

Encoding/Decoding Functions

Introduction Encoding/Decoding Functions Re
o] Yo}

sive Enumerabilit Se)] b da) Summar

Encoding and Decoding: Binary Encode

Consider the function encode : N3 — Ng with:

1
encode(x, y) := (X Ty) + x

2

m encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

m encode is computable

m encode is bijective

x=0 x=1 x= X = x=4
y=0 0 2 5 9 14
y= 1 4 8 13 19
y=2 3 7 12 18 25
y= 6 11 17 24 32
y=4 10 16 23 31 40

Ilm Ju tion Encoding/Decoding Functions I-_ ursive Enumerabilit Se) Yecidability Summar

ooe

Encodlng and Decodlng Blnary Decode

Consider the inverse functions
decode; : Ny — Ny and decode; : Ny — Ny of encode:

decode; (encode(x,y)) = x
decode;(encode(x,y)) =y

m decode; and decode, are computable

Recursive Enumerability

@000

Recursive Enumerability

Introduction Encoding/Decoding Functions Recursive Enumerability

0@00

Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language L C ¥* is called recursively enumerable
if L =0 or if there is a total and computable function
f:Ng — X* such that

L={f(0),f(1),f(2)...}.

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzahlbar, f zihlt L (rekursiv) auf
~~ do not confuse with “abzahlbar” (countable)

Introduction Encodi coding Functions Recursive Enumerability Semi-D ab

[e]e]]o)

Recursive Enumerability: Examples (1)

m ¥ ={a,b}, f(x)=2a*"

n Z:{a,b,...,Z}, f(X):

= X ={0,...,9}, f(x):{

hund
katze

superpapagei

2X — 1 (as digits)
3

if xmod3 =0
if xmod3 =1
if xmod3 =2
if 2 — 1 prime
otherwise

Introduction Encodi coding Functions Recursive Enumerability Semi-D ab

[e]e]]o)

Recursive Enumerability: Examples (1)

m X ={a,b}, f(x)=2a*"

n Z:{a,b,...,Z}, f(X):

= X ={0,...,9}, f(x):{

hund
katze

superpapagei

2X — 1 (as digits)
3

if xmod3 =0
if xmod3 =1
if xmod3 =2
if 2 — 1 prime
otherwise

Introduction Encodi coding Functions Recursive Enumerability Semi-D ab

[e]e]]o)

Recursive Enumerability: Examples (1)

B ¥ ={a,b}, f(x) =a* enumerates {¢,a,aa,...}.

n Z:{a,b,...,Z}, f(X):

= X ={0,...,9}, f(x):{

hund
katze

superpapagei

2X — 1 (as digits)
3

if xmod3 =0
if xmod3 =1
if xmod3 =2
if 2 — 1 prime
otherwise

Recursive Enumerability
[e]e] o]

Recursive Enumerability: Examples (1)

®m ¥ = {a,b}, f(x) =a* enumerates {¢, a,aa,... }.
hund if xmod3 =0
Y ={ab,...,z}, f(x) =1 katze if xmod3 =1

superpapagei if xmod3 =2

2¥ — 1 (as digits) if 2¥ — 1 prime
3 otherwise

= X ={0,...,9}, f(x):{

Recursive Enumerability
[e]e] o]

Recursive Enumerability: Examples (1)

®m ¥ = {a,b}, f(x) =a* enumerates {¢, a,aa,... }.
hund if xmod3 =0
B Y ={ab,...,z}, f(x)={ katze if xmod3 =1
superpapagei if xmod3 =2
enumerates {hund, katze, superpapagei}.

2 -1 igi if 2 —1 pri
. T = {0, 9} F(x) = (as digits) i | prime
3 otherwise

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidabilit:)ecidability Summar

[e]e]]o)

Recursive Enumerability: Examples (1)

®m ¥ = {a,b}, f(x) =a* enumerates {¢, a,aa,... }.
hund if xmod3 =20
m Y ={a,b,...,z}, f(x) = (katze if xmod3 =1
superpapagei if xmod3 =2
enumerates {hund, katze, superpapagei}.

m Y ={0,...,9}, f(x) = {2X — 1 (as digits) if 2% —.1 prime
3 otherwise

Introduction Encoding/Decoding Functions Recursive Enumerability

[e]e]]o)

Summar

Recursive Enumerability: Examples (1)

®m ¥ = {a,b}, f(x) =a* enumerates {¢, a,aa,... }.
hund if xmod3 =0
Y ={ab,...,z}, f(x) =1 katze if xmod3 =1
superpapagei if xmod3 =2
enumerates {hund, katze, superpapagei}.
. T {09} f(x) = 2% — 1 (as digits) if 2% —.1 prime
3 otherwise

enumerates Mersenne primes.

Recursive Enumerability
[e]e]e])

Recursive Enumerability: Examples (2)

For every alphabet ¥, the language >* can be recursively
enumerated with a function fy- : Ng — X*. (How?)

Semi-Decidability

00000000

Semi-Decidability

Introduction Encoding/Decoding Functions Recursive Enumerabilit: Semi-Decidability Dec y Summar
0@000000 o

Semi-Decidability

Definition (Semi-Decidable)

A language L C Y * is called semi-decidable if the following
function x| : ¥* —, {0,1} is computable.

Here, for all w € X*;

, 1 ifwel
x(w) = . :
undefined if w & L

German: semi-entscheidbar

uction Encoding/Decoding Functions sive Enumerabilit Semi-Decidability
00C 00000000

Type-0 Languages vs. Semi-Decidability

m Consider a DTM M that accepts a language L.

m On input w
m M stops after a finite number of steps in an end state if w € L.
m For w ¢ L, the computation does not terminate.

m We can easily create a DTM M’ from M that computes .
(How?)

ng/Decoding Functions sive Enumerabilit Semi-Decidability
[e]e] lelele]ele)

Type-0 Languages vs. Semi-Decidability

m Consider a DTM M that accepts a language L.
m On input w
m M stops after a finite number of steps in an end state if w € L.
m For w ¢ L, the computation does not terminate.
m We can easily create a DTM M’ from M that computes .
(How?)
m Vice versa, given a DTM that computes)/, for some language
L, we can derive a DTM that accepts L.

Ilm Ju tion En dm Decoding Functions I-‘e sive Enumerabilit Semi-Decidability y Summar

00e00000

Type 0 Languages VS. Seml Decidability

m Consider a DTM M that accepts a language L.
m On input w
m M stops after a finite number of steps in an end state if w € L.
m For w ¢ L, the computation does not terminate.
m We can easily create a DTM M’ from M that computes .
(How?)
m Vice versa, given a DTM that computes)/, for some language
L, we can derive a DTM that accepts L.

Theorem (Semi-Decidable = Type 0)

A language L is of type 0 iff L is semi-decidable.

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability D ability Summary

000@0000

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.
Special case L = () is not a problem. (Why?)
Thus, let L # () be a language over the alphabet .

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

000@0000 0000000

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.
Special case L = () is not a problem. (Why?)

Thus, let L # () be a language over the alphabet .

(=): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w:
FOR n:=0,1,2,3,... DO
IF f(n) =w THEN
RETURN 1
END
DONE

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

[o]e]e]e] lelele]

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

(<): L is semi-decidable with semi-decision procedure M.
Choose w € L arbitrarily. (We have L # 0.)

Define:
foe () if n is the encoding of pair (x, y)
f(n) = = and M executed on fx+(x) stops in y steps
w otherwise

f is total and computable and has codomain L.
Therefore f enumerates L. Ol

f uses idea of dovetailing: interleaving unboundedly many
computations by starting new computations dynamically forever

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability

00000e00

Characterizations of Semi-Decidability

Let L be a language. The following statements are equivalent:
© L is semi-decidable.
@ L is recursively enumerable.
© L is of type 0.
Q L = L(M) for some Turing machine M
Q x| is (Turing-) computable.

O L is the domain of a computable function.

@ L is the codomain of a computable function.

Introduction Encodi Decoding Functions Recursive Enumerability Semi-Decidability Decidability Sur

00000080

Characterizations of Semi-Decidability: Proof (1)

(1) < (5): definition of semi-decidability

(1) < (2): earlier theorem in this chapter

(4) < (5): earlier theorem in this chapter

(3) < (4): from Chapter C8

(5) = (6): x| is computable with domain L

(6) = (5): to compute x/, compute a function with domain L,
then return 1

(2) = (7): use a function enumerating L (special case L = ())

Introduction Encoding/Decoding Functions Recursive Enumerability Semi-Decidability Decidability Summary

0000000e

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(7) = (2): If L= 10, obvious.

Otherwise, choose w € L arbitrarily, and let M be an algorithm
computing g : ¥* —, ¥* with codomain L.

To compute a function f enumerating L,
use the same dovetailing idea as in our earlier proof:

(fe- (x)) if n is the encoding of pair (x,y)
f(n) = AL and M executed on fy+(x) stops in y steps
w otherwise

Ol

y

Decidability

®000000

Decidability

Introduction Encoding/Decoding Functions Recursive Enumerabilit: Se > Decidability Summar
0®00000

Semi-Decidability

Definition (Semi-Decidable)

A language L C X* is called semi-decidable if /, : ¥* —, {0,1} is
computable.

Here, for all w € X*;

, 1 ifwel
X(w) = . :
undefined if w ¢ L

For w ¢ L, the computation does not (have to) terminate.

Introduction Encoding/Decoding Functions Recursive Enumerabilit Se > Decidability
0000 00« [e]e] le]elele)

Decidability

Definition (Decidable)

A language L C Y* is called decidable if x; : ¥* — {0,1},
the characteristic function of L, is computable.

Here, for all w € X*:

(w) 1 fwel
w) =
X 0 ifwel

Summar

German: entscheidbar, charakteristische Funktion

Decidability
000000

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different?

Decidability
000000

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

decidability:
———O Yes
T ——O No
semi-decidability:
—0O Yes

Decidability
000000

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case I: we L
decidability:
———0O Yes
T ——O No
semi-decidability:
—0O Yes

Decidability
000000

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case 22 wé¢ L
decidability:
———O Yes
T ——O No
semi-decidability:
O Yes

Decidability
000000

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

decidability:
F——) Yes
W ———
——(O No
semi-decidability:
———0 Yes
W —>
77

Example: Diophantine equations

Decidability
000000

Connection Decidability /Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)

A language L is decidable iff both L and L are semi-decidable.

(=): obvious (Why?)

Introduction Encoding/Decoding Functions Recursive Enumerability Semi idability Decidability Summary

0000080

Connection Decidability/Semi-Decidability (2)

Proof (continued).

(«=): Let M, be a semi-deciding algorithm for L,
and let M; be a semi-deciding algorithm for L.

The following algorithm then is a decision procedure for L,
i.e., computes x;(w) for a given input word w:

FORs:=1,2,3,... DO
IF M, stops on w in s steps with output 1 THEN
RETURN 1
END
IF Mf stops on w in s steps with output 1 THEN
RETURN 0
END
DONE O

ng/Decoding Functions e Enumerability S y Decidability
[e 000000e

Example: Decidable # Known Algorithm

Computability of y; does not mean we know how to compute it:
m L = {n & N | there are n consecutive 7s
in the decimal representation of 7}.

m L is decidable.

m There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ny of consecutive 7s (case 2).

m Case 1: x;(n) =1 forall n
m Case 2: x;(n) =1 if n < ng, otherwise it is 0

m In both cases, the functions are computable.

m We just do not know what is the correct function.

[Je]

Summary

coding/Decoding Functions R ive Enumerabilit S) Summary

oe

Summary

m decidability of problems (= languages)
corresponds to computability of “yes/no” functions
m semi-decidability:
m recognizing “yes” instances in finite time
® no answer for “no” instances

m decidability of L = semi-decidability of L and L
m semi-decidability = recursive enumerability

m relationship to type-0 languages

	Introduction
	

	Encoding/Decoding Functions
	

	Recursive Enumerability
	

	Semi-Decidability
	

	Decidability
	

	Summary

